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Abstract. De Brujin graphs are widely used in bioinformatics for pro-
cessing next-generation sequencing (NGS) data. Due to the very large size
of NGS datasets, it is essential to represent de Bruijn graphs compactly,
and several approaches to this problem have been proposed recently. In
this work, we show how to reduce the memory required by the algorithm
of Chikhi and Rizk (WABI, 2012) that represents de Brujin graphs using
Bloom filters. Our method requires 30% to 40% less memory with re-
spect to their method, with insignificant impact to construction time. At
the same time, our experiments showed a better query time compared to
their method. This is, to our knowledge, the best practical representation
for de Bruijn graphs.

1 Introduction

Modern next-generation sequencing (NGS) technologies generate huge volumes
of short nucleotide sequences (reads) drawn from the DNA sample under study.
The length of a read varies from 35 to about 400 base pairs (letters) and the
number of reads may be hundreds of millions, thus the total volume of data may
reach tens or even hundreds of Gb.

Many computational tools dealing with NGS data, especially those devoted
to genome assembly, are based on the concept of a de Bruijn graph, see e.g. [8].
The nodes of the de Bruijn graph1 are all distinct k-mers occurring in the reads,
and two k-mers are linked by an arc if there is a suffix-prefix overlap of size
k − 1. The value of k is an open parameter, that in practice is chosen between
20 and 64. The idea of using de Bruijn graph for genome assembly goes back to
the “pre-NGS era” [11]. Note, however, that de novo genome assembly is not the
only application of those graphs when dealing with NGS data. There are several

1 Note that this actually a subgraph of the de Bruijn graph under its classical combi-
natorial definition. However, we still call it de Bruijn graph to follow the terminology
common to the bioinformatics literature.



others, including: de novo transcriptome assembly [5] and de novo alternative
splicing calling [14] from transcriptomic NGS data (RNA-seq); metagenome as-
sembly [10] from metagenomic NGS data; and genomic variant detection [6] from
genomic NGS data using a reference genome.

Due to the very large size of NGS datasets, it is essential to represent de
Bruijn graphs as compactly as possible. This has been a very active line of
research. Recently, several papers have been published that propose different
approaches to compressing de Bruijn graphs [4,15,3,2,9].

Conway and Bromage [4] proposed a method based on classical succinct
data structures, i.e. bitmaps with efficient rank/select operations. On the same
direction, Bowe et al. [2] proposed a very interesting succinct representation that,
assuming only one string (read) is present, uses only 4m bits, where m is the
number of arcs in the graph. The more realistic case, where there are M reads,
can be easily reduced to the one string case by concatenating all M reads using
a special separator character. However, in this case the size of the structure is
4m+O(M logm) bits ([2], Theorem 1). Since the multiplicative constant of the
second term is hidden by the asymptotic notation, it is hard to know precisely
what would be the size of this structure in practice.

Ye at al. [15] proposed a different method based on a sparse representation
of de Bruijn graphs, where only a subset of k-mers present in the dataset are
stored. Pell et al. [9] proposed a method to represent it approximately, the so
called probabilistic de Bruijn graph. In their representation a node have a small
probability to be a false positive, i.e. the k-mer is not present in the dataset.
Finally, Chikhi and Rizk [3] improved Pell’s scheme in order to obtain an exact
representation of the de Bruijn graph. This was, to our knowledge, the best
practical representation of an exact de Bruijn graph.

In this work, we focus on the method proposed in [3] which is based on Bloom
filters. They were first used in [9] to provide a very space-efficient representation
of a subset of a given set (in our case, a subset of k-mers), at the price of
allowing one-sided errors, namely false positives. The method of [3] is based
on the following idea: if all queried nodes (k-mers) are only those which are
reachable from some node known to belong to the graph, then only a fraction
of all false positives can actually occur. Storing these false positives explicitly
leads to an exact (false positive free) and space-efficient representation of the de
Bruijn graph.

Our contribution is an improvement of this scheme by changing the repre-
sentation of the set of false positives. We achieve this by iteratively applying a
Bloom filter to represent the set of false positives, then the set of “false false
positives” etc. We show analytically that this cascade of Bloom filters allows for
a considerable further economy of memory, improving the method of [3]. De-
pending on the value of k, our method requires 30% to 40% less memory with
respect to the method of [3]. Moreover, with our method, the memory grows
very little as k grows. Finally, we implemented our method and tested it against
[3] on real datasets. The tests confirm the theoretical predictions for the size of
structure and show a 20% to 30% improvement in query times.



2 Preliminaries

A Bloom filter is a space-efficient data structure for representing a given subset
of elements T ⊆ U , with support for efficient membership queries with one-sided
error. That is, if a query for an element x ∈ U returns no then x /∈ T , but if
it returns yes then x may or not belong to T , i.e. with small probability x /∈ T
(false positive). It consists of a bitmap (array of bits) B with size m and a set of
p distinct hash functions {h1, . . . , hp}, where hi : U 7→ {0, . . . ,m− 1}. Initially,
all bits of B are set to 0. An insertion of an element x ∈ T is done by setting
the elements of B with indices h1(x), . . . , hp(x) to 1, i.e. B[hi(x)] = 1 for all
i ∈ [1, p]. The membership queries are done symmetrically, returning yes if all
B[hi(x)] are equal 1 and no otherwise. As shown in [7], when considering hash
functions that yield equally likely positions in the bit array, and for large enough
array size m and number of inserted elements n, the false positive rate F is

F ≈ (1− e−pn/m)p = (1− e−p/r)p (1)

where r = m/n is the number of bits (of the bitmap B) per element (of T
represented). It is not hard to see that this expression is minimized when p =
r ln 2, giving a false positive rate of

F ≈ (1− e−p/r)p = (1/2)p ≈ 0.6185r. (2)

A de Bruijn graph, for a given parameter k, of a set of reads (strings) R ⊆
Σ∗ = {A,C, T,G}∗ is entirely defined by the set T ⊆ U = Σk of k-mers present
in R. The nodes of the graph are precisely the k-mers of T and for any two
vertices u, v ∈ T , there is an arc from u to v if the suffix of u of size k − 1 is
equal to the prefix of v of the same size. Thus, given a set T ⊆ U of k-mers
we can represent its de Bruijn graph using a Bloom filter B. This approach has
the disadvantage of having false positive nodes, as direct consequence of the
false positive queries in the Bloom filter, which can create false connections in
the graph (see [9] for the influence of false positive nodes on the topology of the
graph). The naive way to remove those false positives nodes, by explicitly storing
(e.g. using a hash table) the set of all false positives of B, is clearly inefficient,
as the expected number of elements to be explicitly stored is |U |F = 4kF .

The key idea of [3] is to explicitly store only a subset of all false positives of B,
the so-called critical false positives. This is possible because in order to perform
an exact (without false positive nodes) graph traversal, only potential neighbors
of nodes in T are queried. In other words, the set of critical false positives consists
of the potential neighbors of T that are false positives of B, i.e. the k-mers from
U that overlap the k-mers from T by k − 1 letters and are false positives of B.
Thus, the size of the set of critical false positives is bounded by 8|T |, since each
node of T has at most 2|Σ| = 8 neighbors (for each node, there are |Σ| k-mers
overlapping the k− 1 suffix and |Σ| overlapping the k− 1 prefix). Therefore, the
expected number of critical false positives can be upper-estimated by 8|T |F .



3 Cascading Bloom filter

Let R be a set of reads and T0 be the set of occurring k-mers (nodes of the
de Brujin graph) that we want to store. As stated in Section 2, the method of
[3] stores T0 via a bitmap B1 using a Bloom filter, together with the set T1 of
critical false positives. T1 consists of those k-mers which have a k − 1 overlap
with k-mers from T0 but which are stored in B1 “by mistake”, i.e. belong2 to B1

but not to T0. B1 and T1 are sufficient to represent the graph provided that the
only queried k-mers are those which are potential neighbors of k-mers of T0.

The idea we introduce in this work is to use this structure recursively and
represent the set T1 by a new bitmap B2 and a new set T2, then represent T2
by B3 and T3, and so on. More formally, starting from B1 and T1 defined as
above, we define a series of bitmaps B1, B2, . . . and a series of sets T1, T2, . . . as
follows. B2 stores the set of false positives T1 using another Bloom filter, and
the set T2 contains the critical false positives of B2, i.e. “true nodes” from T0
that are stored in B2 “by mistake” (we call them false2 positives). B3 and T3,
and, generally, Bi and Ti are defined similarly: Bi stores k-mers of Ti−1 using a
Bloom filter, and Ti contains k-mers stored in Bi “by mistake”, i.e. those k-mers
that do not belong to Ti−1 but belong to Ti−2 (we call them falsei positives).
Observe that T0 ∩ T1 = ∅, T0 ⊇ T2 ⊇ T4 . . . and T1 ⊇ T3 ⊇ T5 . . ..

The following lemma shows that the construction is correct, that is it allows
one to verify whether or not a given k-mer belongs to the set T0.

Lemma 1. Given a k-mer (node) K, consider the smallest i such that K 6∈ Bi+1

(if K 6∈ B1, we define i = 0). Then, if i is odd, then K ∈ T0, and if i is even
(including 0), then K 6∈ T0.

Proof. Observe that K 6∈ Bi+1 implies K 6∈ Ti by the basic property of Bloom
filters that membership queries have one-sided error, i.e. there are no false neg-
atives. We first check the Lemma for i = 0, 1.

For i = 0, we have K 6∈ B1, and then K 6∈ T0.
For i = 1, we have K ∈ B1 but K 6∈ B2. The latter implies that K 6∈ T1, and

then K must be a false2 positive, that is K ∈ T0. Note that here we use the fact
that the only queried k-mers K are either nodes of T0 or their neighbors in the
graph (see [3]), and therefore if K ∈ B1 and K 6∈ T0 then K ∈ T1.

For the general case i ≥ 2, we show by induction that K ∈ Ti−1. Indeed,
K ∈ B1∩. . .∩Bi implies K ∈ Ti−1∪Ti (which, again, is easily seen by induction),
and K 6∈ Bi+1 implies K 6∈ Ti.

Since Ti−1 ⊆ T0 for odd i, and Ti−1 ⊆ T1 for even i (for T0 ∩ T1 = ∅), the
lemma follows.

Naturally, the lemma provides an algorithm to check if a given k-mer K
belongs to the graph: it suffices to check successively if it belongs to B1, B2, . . .
until we encounter the first Bi+1 which does not contain K. Then, the answer

2 By a slight abuse of language, we say that “an element belongs to Bj” if it is accepted
by the corresponding Bloom filter.



will simply depend on whether i is even or odd: K belongs to the graph if and
only if i is odd.

In our reasoning so far, we assumed an infinite number of bitmaps Bi. Of
course, in practice we cannot store infinitely many (and even simply many)
bitmaps. Therefore, we “truncate” the construction at some step t and store a
finite set of bitmaps B1, B2, . . . , Bt together with an explicit representation of
Tt. The procedure of Lemma 1 is extended in the obvious way: if for all 1 ≤ i ≤ t,
K ∈ Bi, then the answer is determined by directly checking K ∈ Tt.

4 Memory and time usage

First, we estimate the memory needed by our data structure, under the assump-
tion of an infinite number of bitmaps. Let N be the number of “true positives”,
i.e. nodes of T0. As stated in Section 2, if T0 has to be stored via a bitmap B1 of
size rN , the false positive rate can be estimated as cr, where c = 0.6185. And,
the expected number of critical false positive nodes (set T1) has been estimated
in [3] to be 8Ncr, as every node has eight extensions, i.e. potential neighbors in
the graph. We slightly refine this estimation to 6Ncr by noticing that for most of
the graph nodes, two out of these eight extensions belong to T0 (are real nodes)
and thus only six are potential false positives. Furthermore, to store these 6Ncr

critical false positive nodes, we use a bitmap B2 of size 6rNcr. Bitmap B3 is used
for storing nodes of T0 which are stored in B2 “by mistake” (set T2). We estimate
the number of these nodes as the fraction cr (false positive rate of filter B2) of
N (size of T0), that is Ncr. Similarly, the number of nodes we need to put to B4

is 6Ncr multiplied by cr, i.e. 6Nc2r. Keeping counting in this way, the memory
needed for the whole structure is rN + 6rNcr + rNcr + 6rNc2r + rNc2r + ...
bits. The number of bits per k-mer is then

r+ 6rcr + rcr + 6rc2r + ... = (r+ 6rcr)(1 + cr + c2r + ...) = (1 + 6cr)
r

1− cr
. (3)

A simple calculation shows that the minimum of this expression is achieved when
r = 5.464, and then the minimum memory used per k-mer is 8.45 bits.

As mentioned earlier, in practice we store only a finite number of bitmaps
B1, . . . , Bt together with an explicit representation (such as array or hash table)
of Tt. In this case, the memory taken by the bitmaps is a truncated sum rN +
6rNcr + rNcr + .., and a data structure storing Tt takes either 2k · Ncd t

2 er or
2k · 6Ncd t

2 er bits, depending on whether t is even or odd. The latter follows
from the observations that we need to store Ncd

t
2 er (or 6rNcd

t
2 er) k-mers, each

taking 2k bits of memory. Consequently, we have to adjust the optimal value of
r minimizing the total space, and re-estimate the resulting space spent on one
k-mer.

Table 1 shows estimations for optimal values of r and the corresponding space
per k-mer for t = 4 and t = 6, and several values of k. The data demonstrates
that even such small values of t lead to considerable memory savings. It ap-
pears that the space per k-mer is very close to the “optimal” space (8.45 bits)



obtained for the infinite number of filters. Table 1 reveals another advantage of
our improvement: the number of bits per stored k-mer remains almost constant
for different values of k.

k optimal r bits per k-mer optimal r bits per k-mer bits per k-mer

for t = 4 for t = 4 for t = 6 for t = 6 for t = 1 ([3])

16 5.777 8.556 5.506 8.459 12.078

32 6.049 8.664 5.556 8.47 13.518

64 6.399 8.824 5.641 8.49 14.958

128 6.819 9.045 5.772 8.524 16.398

Table 1. 1st column: k-mer size; 2nd and 4th columns: optimal value of r for Bloom
filters (bitmap size per number of stored elements) for t = 4 and t = 6 respectively;
3rd and 5th columns: the resulting space per k-mer (for t = 4 and t = 6); 6th column:
space per k-mer for the method of [3] (t = 1)

The last column of Table 1 shows the memory usage of the original method of
[3], obtained using the estimation (1.44 log2( 16k

2.08 ) + 2.08) the authors provided.
Note that according to that estimation, doubling the value of k results in a
memory increment by 1.44 bits, whereas in our method the increment is of 0.11
to 0.22 bits.

Let us now estimate preprocessing and query times for our scheme. If the
value of t is small (such as t = 4, as in Table 1), the preprocessing time grows
insignificantly in comparison to the original method of [3]. To construct each Bi,
we need to store Ti−2 (possibly on disk, if we want to save on the internal memory
used by the algorithm) in order to compute those k-mers which are stored in
Bi−1 “by mistake”. The preprocessing time increases little in comparison to the
original method of [3], as the size of Bi decreases exponentially and then the
time spent to construct the whole structure is linear on the size of T0.

The query time can be split in two parts: the time spent on querying t Bloom
filters and the time spent on querying Tt. Clearly, using t Bloom filters instead
of a single one introduces a multiplicative factor of t to the first part of the query
time. On the other hand, the set Tt is generally much smaller than T1, due to
the above-mentioned exponential decrease. Depending on the data structure for
storing Tt, the time saving in querying Tt vs. T1 may even dominate the time loss
in querying multiple Bloom filters. Our experimental results (Section 5.1 below)
confirm that this situation does indeed occur in practice. Note that even in the
case when querying Tt weakly depends on its size (e.g. when Tt is implemented
by a hash table), the query time will not increase much, due to our choice of a
small value for t, as discussed earlier.



4.1 Using different values of r for different filters

In the previous section, we assumed that each of our Bloom filters uses the same
value of r, the ratio of bitmap size to the number of stored k-mers. However,
formula (3) for the number of bits per k-mer shows a difference for odd and
even filter indices. This suggests that using different parameters r for different
filters, rather than the same for all filters, may reduce the space even further. If
ri denotes the corresponding ratio for filter Bi, then (3) should be rewritten to

r1 + 6r2c
r1 + r3c

r2 + 6r4c
r1+r3 + ..., (4)

and the minimum value of this expression becomes 7.93 (this value is achieved
with r1 = 4.41; ri = 1.44, i > 1).

In the same way, we can use different values of ri in the truncated case. This
leads to a small 2% to 4% improvement in comparison with case of unique value
of r. Table 2 shows results for the case t = 4 for different values of k.

k r1, r2, r3, r4 bits per k-mer bits per k-mer

different values of r single value of r

16 5.254, 3.541, 4.981, 8.653 8.336 8.556

32 5.383, 3.899, 5.318, 9.108 8.404 8.664

64 5.572, 4.452, 5.681, 9.108 8.512 8.824

128 5.786, 5.108, 6.109, 9.109 8.669 9.045

Table 2. Estimated memory occupation for the case of different values of r vs. single
value of r, for 4 Bloom filters (t = 4). Numbers in the second column represent values
of ri on which the minimum is achieved. For the case of single r, its value is shown in
Table 1.

5 Experimental results

5.1 Implementation and experimental setup

We implemented our method using the Minia software [3] and ran comparative
tests for 2 and 4 Bloom filters (t = 2, 4). Note that since the only modified part of
Minia was the construction step and the k-mer membership queries, this allows
us to precisely evaluate our method against the one of [3].

The first step of the implementation is to retrieve the list of k-mers that
appear more than d times using DSK [13] – a constant memory streaming al-
gorithm to count k-mers. Each k-mer appearing more than d times (set T0) is
inserted into B1. Next, all possible extensions of each k-mer in T0 are queried



against B1, and those which return true are written to the disk. Then, this set
is traversed and only the k-mers absent from T0 are kept. This results in the
set T1 of critical false positives, which is also kept on disk. Up to this point, the
procedure is identical to that of [3].

Next, we insert all k-mers from T1 into B2 and to obtain T2, we check for
each k-mer in T0 if a query to B2 returns true. This results in the set T2. Thus,
at this point we have B1, B2 and T2, a complete representation for t = 2. In
order to build the data structure for t = 4, we continue this process, by inserting
T2 in B3 and retrieving T3 from T1 (stored on disk). It should be noted that to
obtain Ti we need Ti−2, and by always storing it on disk we guarantee not to
use more memory than the size of the final structure. The set Tt (that is, T1, T2
or T4 in our experiments) is stored as a sorted array and is searched by a binary
search. We found this implementation more efficient than a hash table.

Assessing the query time is done through the procedure of graph traversal,
as it is implemented in [3]. Since the procedure is identical and independent on
the data structure, the time spent on graph traversal is a faithful estimator of
the query time.

We compare three versions: t = 1 (i.e. the version of [3]), t = 2 and t = 4.
For convenience, we define 1 Bloom, 2 Bloom and 4 Bloom as the versions with
t = 1, 2 and 4, respectively.

5.2 E.coli dataset, varying k

In this set of tests, our main goal was to evaluate the influence of the k-mer size
on principal parameters: size of the whole data structure, size of the set Tt, graph
traversal time, and time of construction of the data structure. We retrieved 10M
E. coli reads of 100bp from the Short Read Archive (ERX008638) without read
pairing information and extracted all k-mers occurring at least two times. The
total number of k-mers considered varied, depending on the value of k, from
6,967,781 (k = 15) to 5,923,501 (k = 63). We ran each version, 1 Bloom ([3]),
2 Bloom and 4 Bloom, for values of k ranging from 16 to 64. The results are
shown in Fig. 1.

The total size of the structures in bits per stored k-mer, i.e. the size of
B1 and T1 (respectively, B1, B2,T2 or B1, B2, B3, B4,T4) is shown in Fig. 1(a).
As expected, the space for 4 Bloom filters is the smallest for all values of k
considered, showing a considerable improvement, ranging from 32% to 39%,
over the version of [3]. Even the version with just 2 Bloom filters shows an
improvement of at least 20% over [3], for all values of k. Regarding the influence
of the k-mer size on the structure size, we observe that for 4 Bloom filters the
structure size is almost constant, the minimum value is 8.60 and the largest
is 8.89, an increase of only 3%. For 1 and 2 Bloom the same pattern is seen: a
plateau from k = 16 to 32, a jump for k = 33 and another plateau from k = 33 to
64. The jump at k = 32 is due to switching from 64-bit to 128-bit representation
of k-mers in the table Tt.

The traversal times for each version is shown in Fig. 1(c). The fastest version
is 4 Bloom, showing an improvement over [3] of 18% to 30%, followed by 2



Bloom. This result is surprising and may seem counter-intuitive, as we have four
filters to apply to the queried k-mer rather than a single filter as in [3]. However,
the size of T4 (or even T2) is much smaller than T1, as the size of Ti’s decreases
exponentially. As Tt is stored in an array, the time economy in searching T4 (or
T2) compared to T1 dominates the time lost on querying additional Bloom filters,
which explains the overall gain in query time.

As far as the construction time is concerned (Fig. 1(d)), our versions yielded
also a faster construction, with the 4 Bloom version being 5% to 22% faster
than that of [3]. The gain is explained by the time required for sorting the array
storing Tt, which is much higher for T0 than for T2 or T4. However, the gain is
less significant here, and, on the other hand, was not observed for bigger datasets
(see Section 5.4).

5.3 E. coli dataset, varying coverage

From the complete E. coli dataset (≈44M reads) from the previous section,
we selected several samples ranging from 5M to 40M reads in order to assess
the impact of the coverage on the size of the data structures. This strain E.
coli (K-12 MG1655) is estimated to have a genome of 4.6M bp [1], implying
that a sample of 5M reads (of 100bp) corresponds to ≈100X coverage. We set
d = 3 and k = 27. The results are shown in Fig. 2. As expected, the memory
consumption per k-mer remains almost constant for increasing coverage, with
a slight decrease for 2 and 4 Bloom. The best results are obtained with the 4
Bloom version, an improvement of 33% over the 1 Bloom version of [3]. On the
other hand, the number of distinct k-mers increases markedly (around 10% for
each 5M reads) with increasing coverage, see Fig. 2(b). This is due to sequencing
errors: an increase in coverage implies more errors with higher coverage, which
are not removed by our cutoff d = 3. This suggests that the value of d should
be chosen according to the coverage of the sample. Moreover, in the case where
read qualities are available, a quality control pre-processing step may help to
reduce the number of sequencing errors.

5.4 Human dataset

We also compared 2 and 4 Bloom versions with the 1 Bloom version of [3]
on a large dataset. For that, we retrieved 564M Human reads of 100bp (SRA:
SRX016231) without pairing information and discarded the reads occurring less
than 3 times. The dataset corresponds to≈17X coverage. A total of 2,455,753,508
k-mers were indexed. We ran each version, 1 Bloom ([3]), 2 Bloom and 4 Bloom
with k = 23. The results are shown in Table 3.

The results are in general consistent with the previous tests on E.coli datasets.
There is an improvement of 34% (21%) for the 4 Bloom (2 Bloom) in the size
of the structure. The graph traversal is also 26% faster in the 4 Bloom version.
However, in contrast to the previous results, the graph construction time in-
creased by 10% and 7% for 4 and 2 Bloom versions respectively, when compared
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Fig. 1. Results for 10M E.coli reads of 100bp using several values of k. The 1 Bloom
version corresponds to the one presented in [3]. (a) Size of the structure in bits used per
k-mer stored. (b) Number of false positives stored in T1, T2 or T4 for 1, 2 or 4 Bloom
filters, respectively. (c) De Bruijn graph construction time, excluding k-mer counting
step. (d) De Bruijn graph traversal time, including branching k-mer indexing.
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Fig. 2. Results for E.coli reads of 100bp using k = 27. The 1 Bloom version corresponds
to the one presented in [3]. (a) Size of the structure in bits used per k-mer stored. (b)
Number of distinct k-mers.

to the 1 Bloom version. This is due to the fact that disk writing/reading oper-
ations now dominate the time for the graph construction, and 2 and 4 Bloom
versions generate more disk accesses than 1 Bloom. As stated in Section 5.1,
when constructing the 1 Bloom structure, the only part written on the disk is
T1 and it is read only once to fill an array in memory. For 4 Bloom, T1 and T2
are written to the disk, and T0 and T1 are read at least one time each to build
B2 and B3. Moreover, since the size coefficient of B1 reduces, from r = 11.10 in
1 Bloom to r = 5.97 in 4 Bloom, the number of false positives in T1 increases.

6 Discussion and Conclusions

Using cascading Bloom filters for storing de Bruijn graphs brings a clear advan-
tage over the single-filter method of [3]. In terms of memory consumption, which
is the main parameter here, we obtained an improvement of around 30%-40%
in all our experiments. Our data structure takes 8.5 to 9 bits per stored k-mer,
compared to 13 to 15 bits by the method of [3]. This confirms our analytical
estimations. The above results were obtained using only four filters and are very
close to the estimated optimum (around 8.4 bits/k-mer) produced by the infi-
nite number of filters. An interesting characteristic of our method is that the
memory grows insignificantly with the growth of k, even slower than with the
method of [3]. Somewhat surprisingly, we also obtained a significant decrease,
of order 20%-30%, of query time. The construction time of the data structure
varied from being 10% slower (for the human dataset) to 22% faster (for the
bacterial dataset).



Method 1 Bloom 2 Bloom 4 Bloom

Construction time (s) 40160.7 43362.8 44300.7

Traversal time (s) 46596.5 35909.3 34177.2

r coefficient 11.10 7.80 5.97

Bloom filters size (MB)

B1 = 3250.95 B1 = 2283.64 B1 = 1749.04

B2 = 323.08 B2 = 591.57

B3 = 100.56

B4 = 34.01

False positive table size (MB) T1 = 545.94 T2 = 425.74 T4 = 36.62

Total size (MB) 3796.89 3032.46 2511.8

Size (bits/k-mer) 12.96 10.35 8.58

Table 3. Results of 1, 2 and 4 Bloom filters version for 564M Human reads of 100bp
using k = 23. The 1 Bloom version corresponds to the one presented in [3].

As stated previously, another compact encoding of de Bruijn graphs has been
proposed in [2], however no implementation of the method was made available.
For this reason, we could not experimentally compare our method with the one
of [2]. We remark, however, that the space bound of [2] heavily depends on the
number of reads (i.e. coverage), while in our case, the data structure size is
almost invariant with respect to the coverage (Section 5.3).

An interesting prospect for further possible improvements of our method is
offered by work [12], where an efficient replacement to Bloom filter was intro-
duced. The results of [12] suggest that we could hope to reduce the memory to
about 5 bits per k-mer. However, there exist obstacles on this way: an imple-
mentation of such a structure would probably result in a significant construction
and query time increase.
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