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Abstract

Minia is a software for ultra-low memory DNA sequence assembly.
It takes as input a set of short genomic sequences (typically, data
produced by the Illumina DNA sequencer). Its output is a set of
contigs (assembled sequences), forming an approximation of the ex-
pected genome. Minia is based on a succinct representation of the
de Bruijn graph. The computational resources required to run Minia
are significantly lower than that of other assemblers.
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1 Installation

To install Minia, just type make in the Minia folder. Minia has been tested on
Linux and MacOS systems. To run Minia, type ./minia.
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2 Parameters

The usage is:

./minia [input_file] [kmer_size] [min_abundance] [estimated_genome_size] [prefix]

An example command line is:

./minia reads.fastq 31 3 100000000 minia_assembly_k31_m3

All the parameters need to be specified, in the following order:

1. input_file – the input file

2. kmer_size – k-mer length

3. min_abundance – filters out k-mers seen less than the specified number of
times

4. estimated_genome_size – rough estimation of the size of the genome to
assemble, in base pairs.

5. prefix – any prefix string to store unique temporary files for this assembly

Minia now uses the Cascading Bloom filters improvement (http://arxiv.org/abs/1302.7278)
by default, thanks to Gustavo Sacomoto for the implementation in Minia.
Launch Minia with the --original option to revert to the original data struc-
ture.

3 Explanation of parameters

kmer_size The k-mer length is the length of the nodes in the de Bruijn graph.
It strongly depends on the input dataset. A typical value to try for short
Illumina reads (read length above 50) is 27. For longer Illumina reads
(≈ 100 bp) with sufficient coverage (> 40x), we had good results with
k = 43.

min_abundance The min_abundance is used to remove erroneous, low-abundance
k-mers. This parameter also strongly depends on the dataset. It corre-
sponds to the smallest amount of times a correct k-mer appears in the
reads. A typical value is 3. Setting it to 1 is not recommended1. If the
dataset has high coverage, try larger values.

estimated_genome_size The estimated genome size parameter only controls
the memory usage during the first phase of Minia (graph construction).
It has no impact on the assembly.

prefix The prefix parameter is any arbitrary file name prefix, for example,
test_assembly.

1as no erroneous k-mer will be discarded, which will likely result in a very large memory
usage
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4 Input

FASTA/FASTQ

Minia assembles any type of Illumina reads, given in the FASTA or FASTQ
format. Paired or mate-pairs reads are OK, but keep in mind that Minia
discards pairing information.

Multipe Files

Minia can assemble multiple input files. Just create a text file containing
the list of read files, one file name per line, and pass this list as the first pa-
rameter of Minia (instead of a FASTA/FASTQ file). Therefore the param-
eter input_file can be either (i) the read file itself (FASTA/FASTQ/compressed),
or (ii) a file containing a list of file names.

line format

In FASTA files, each read can be split into multiple lines, whereas in
FASTQ, each read sequence must be in a single line.

gzip compression

Minia can direclty read files compressed with gzip. Compressed files should
end with ’.gz’. Input files of different types can be mixed (i.e. gzipped or
not, in FASTA or FASTQ)

5 Output

The output of Minia is a set of contigs in the FASTA format, in the file
[prefix].contigs.fa.

6 Memory usage

We estimate that the memory usage of Minia is roughly 2 GB of RAM per
gigabases in the target genome to assemble. It is independent of the coverage
of the input dataset, provided that the min_abundance parameter is correctly
set. For example, a human genome was assembled in 5.7 GB of RAM. This was
using the original data structure; the current implementation relies on Cascading
Bloom filters and should use ≈ 1 − 2 GB less memory. A better estimation of
the memory usage can be found in the Appendix.

7 Disk usage

Minia writes large temporary files during the k-mer counting phase. These
files are written in the working directory when you launched Minia. For better
performance, run Minia on a local hard drive.

8 Larger k-mer lengths

Minia supports arbitrary large k-mer lengths. To compile Minia for k-mer
lengths up to, say, 100, type:
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make clean && make k=100

9 Appendixes

The rest of this manual describes the data structure used by Minia. The first text
is from an original research article published at WABI 2012. The second text is
an improvement made and implemented in Minia by other authors, published
at WABI 2013.
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Space-efficient and exact de Bruijn graph
representation based on a Bloom filter
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Abstract. The de Bruijn graph data structure is widely used in next-
generation sequencing (NGS). Many programs, e.g. de novo assemblers,
rely on in-memory representation of this graph. However, current tech-
niques for representing the de Bruijn graph of a human genome require
a large amount of memory (≥ 30 GB).

We propose a new encoding of the de Bruijn graph, which occupies an
order of magnitude less space than current representations. The encoding
is based on a Bloom filter, with an additional structure to remove critical
false positives. An assembly software implementing this structure, Minia,
performed a complete de novo assembly of human genome short reads
using 5.7 GB of memory in 23 hours.

1 Introduction

The de Bruijn graph of a set of DNA or RNA sequences is a data structure which
plays an increasingly important role in next-generation sequencing applications.
It was first introduced to perform de novo assembly of DNA sequences [?].
It has recently been used in a wider set of applications: de novo mRNA [?]
and metagenome [?] assembly, genomic variants detection [?,?] and de novo
alternative splicing calling [?]. However, an important practical issue of this
structure is its high memory footprint for large organisms. For instance, the
straightforward encoding of the de Bruijn graph for the human genome (n ≈
2.4 · 109, k-mer size k = 27) requires 15 GB (n · k/4 bytes) of memory to store
the nodes sequences alone. Graphs for much larger genomes and metagenomes
cannot be constructed on a typical lab cluster, because of the prohibitive memory
usage.

Recent research on de Bruijn graphs has been targeted on designing more
lightweight data structures. Li et al. pioneered minimum-information de Bruijn
graphs, by not recording read locations and paired-end information [?]. Simpson
et al. implemented a distributed de Bruijn graph to reduce the memory usage per
node [?]. Conway and Bromage applied sparse bit array structures to store an
implicit, immutable graph representation [?]. Targeted methods compute local
assemblies around sequences of interest, using negligible memory, with greedy
extensions [?] or portions of the de Bruijn graph [?]. Ye et al. recently showed
that a graph roughly equivalent to the de Bruijn graph can be obtained by
storing only one out of g nodes (10 ≤ g ≤ 25) [?].



Conway and Bromage observed that the self-information of the edges is a
lower bound for exactly encoding the de Bruijn graph [?]:

log2(

(
4k+1

|E|

)
) bits,

where k + 1 is the length of the sequence that uniquely defines an edge, and |E|
is the number of edges. In this article, we will consider for simplicity that a de
Bruijn graph is fully defined by its nodes. A similar lower bound can then be
derived from the self-information of the nodes. For a human genome graph, the

self-information of |N | ≈ 2.4 · 109 nodes is log2(
(

4k

|N |
)
) ≈ 6.8 GB for k = 27, i.e.

≈ 24 bits per node.
A very recent article [?] from Pell et al. introduced the probabilistic de Bruijn

graph, which is a de Bruijn graph stored as a Bloom filter (described in the next
section). It is shown that the graph can be encoded with as little as 4 bits
per node. An important drawback of this representation is that the Bloom filter
introduces false nodes and false branching. However, they observe that the global
structure of the graph is approximately preserved, up to a certain false positive
rate. Pell et al. did not perform assembly directly by traversing the probabilistic
graph. Instead, they use the graph to partition the set of reads into smaller
sets, which are then assembled in turns using a classical assembler. In the arXiv
version of [?] (Dec 2011), it is unclear how much memory is required by the
partitioning algorithm.

In this article, we focus on encoding an exact representation of the de Bruijn
graph that efficiently implements the following operations:

1. For any node, enumerate its neighbors
2. Sequentially enumerate all the nodes

The first operation requires random access, hence is supported by a structure
stored in memory. Specifically, we show in this article that a probabilistic de
Bruijn graph can be used to perform the first operation exactly, by recording
a set of troublesome false positives. The second operation can be done with
sequential access to the list of nodes stored on disk. One highlight of our scheme
is that the resulting memory usage is approximated by

1.44 log2(
16k

2.08
) + 2.08 bits/k-mer.

For the human genome example above and k = 27, the size of the structure is
3.7 GB, i.e. 13.2 bits per node. This is effectively below the self-information of
the nodes. While this may appear surprising, this structure does not store the
precise set of nodes in memory. In fact, compared to a classical de Bruijn graph,
the membership of an arbitrary node cannot be efficiently answered by this
representation. However, for the purpose of many applications (e.g. assembly),
these membership queries are not needed.

We apply this representation to perform de novo assembly by traversing the
graph. In our context, we refer by traversal to any algorithm which visits all the



nodes of the graph exactly once (e.g. a depth-first search algorithm). Thus, a
mechanism is needed to mark which nodes have already been visited. However,
nodes of a probabilistic de Bruijn graph cannot store additional information. We
show that recording only the visited complex nodes (those with in-degree or out-
degree different than one) is a space-efficient solution. The combination of (i) the
probabilistic de Bruijn graph along with the set of critical false positives, and
(ii) the marking scheme, enables to perform very low-memory de novo assembly.

In the first Section, the notions of de Bruijn graphs and Bloom filters are
formally defined. Section 3 describes our scheme for exactly encoding the de
Bruijn graph using a Bloom filter. Section 4 presents a solution for traversing
our representation of the de Bruijn graph. Section 6 presents two experimental
results: (i) an evaluation of the usefulness of removing false positives and (ii) an
assembly of a real human dataset using an implementation of the structure. A
comparison is made with other recent assemblers based on de Bruijn graphs.

2 de Bruijn graphs and Bloom filters

The de Bruijn graph [?], for a set of strings S, is a directed graph. For simplic-
ity, we adopt a node-centric definition. The nodes are all the k-length substrings
(also called k-mers) of each string in S. An edge s1 → s2 is present if the
(k − 1)-length suffix of s1 is also a prefix of s2. Throughout this article, we will
indifferently refer to a node and its k-mer sequence as the same object.

A more popular, edge-centric definition of de Bruijn graphs requires that
edges reflect consecutive nodes. For k′-mer nodes, an edge s1 → s2 is present if
there exists a (k′ + 1)-mer in a string of S containing s1 as a prefix and s2 as
a suffix. The node-centric and edge-centric definitions are essentially equivalent
when k′ = k − 1 (although in the former, nodes have length k, and k − 1 in the
latter).

The Bloom filter [?] is a space efficient hash-based data structure, designed
to test whether an element is in a set. It consists of a bit array of m bits,
initialized with zeros, and h hash functions. To insert or test the membership
of an element, h hash values are computed, yielding h array positions. The
insert operation corresponds to setting all these positions to 1. The membership
operation returns yes if and only if all of the bits at these positions are 1. A no
answer means the element is definitely not in the set. A yes answer indicates that
the element may or may not be in the set. Hence, the Bloom filter has one-sided
errors. The probability of false positives increases with the number of elements
inserted in the Bloom filter. When considering hash functions that yield equally
likely positions in the bit array, and for large enough array size m and number
of inserted elements n, the false positive rate F is [?]:

F ≈
(

1− e−hn/m
)h

=
(

1− e−h/r
)h

(1)

where r = m/n is the number of bits per element. For a fixed ratio r, minimizing
Equation 1 yields the optimal number of hash functions h ≈ 0.7r, for which F is



approximately 0.6185r. Solving Equation 1 for m, assuming that h is the optimal

number of hash function, yields m ≈ 1.44 log2(
1

F )n.

The probabilistic de Bruijn graph is obtained by inserting all the nodes
of a de Bruijn graph (i.e all k-mers) in a Bloom filter [?]. Edges are implicitly
deduced by querying the Bloom filter for the membership of all possible exten-
sions of a k-mer. Specifically, an extension of a k-mer v is the concatenation of
either (i) the k − 1 suffix of v with one of the four possible nucleotides, or (ii)
one of the four nucleotides with the k−1 prefix of v. The probabilistic de Bruijn
graph holds an over-approximation of the original de Bruijn graph. Querying the
Bloom filter for the existence of an arbitrary node may return a false positive
answer (but never a false negative). This introduces false branching between
original and false positive nodes.

3 Removing critical false positives

3.1 The cFP structure

Our contribution is a mechanism that avoids false branching. Specifically, we
propose to detect and store false positive elements which are responsible for false
branching, in a separate structure. To this end, we introduce the cFP structure
of critical False Positives k-mers, implemented with a standard set allowing fast
membership test. Each query to the Bloom filter is modified such that the yes
answer is returned if and only if the Bloom filter answers yes and the element
is not in cFP .

Naturally, if cFP contained all the false positives elements, the benefits of
using a Bloom filter for memory efficiency would be lost. The key observation
is that the k-mers which will be queried when traversing the graph are not all
possible k-mers. Let S be the set of true positive nodes, and E be the set of
extensions of nodes from S. Assuming we only traverse the graph by starting
from a node in S, false positives that do not belong to E will never be queried.
Therefore, the set cFP will be a subset of E . Let P be the set of all elements of
E for which the Bloom filter answers yes. The set of critical false positives
cFP is then formally defined as cFP = P \ S.

Figure 1 shows a simple graph with the set S of correct nodes in regular
circles and cFP in dashed rectangles. The exact representation of the graph
is therefore made of two data structures: the Bloom filter, and the set cFP of
critical false positives. The set cFP can be constructed using an algorithm that
limits its memory usage, e.g. to the size of the Bloom filter. The set P is created
on disk, from which cFP is then gradually constructed by iteratively filtering P
with partitions of S loaded in a hash-table.

3.2 Dimensioning the Bloom filter for minimal memory usage

The set cFP grows with the number of false positives. To optimize memory
usage, a trade-off between the sizes of the Bloom filter and cFP is studied here.
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Fig. 1: A complete example of removing false positives in the probabilistic de
Bruijn graph. (a) shows S, an example de Bruijn graph (the 7 non-dashed nodes),
and B, its probabilistic representation from a Bloom filter (taking the union of all
nodes). Dashed rectangular nodes (in red in the electronic version) are immediate
neighbors of S in B. These nodes are the critical false positives. Dashed circular
nodes (in green) are all the other nodes of B; (b) shows a sample of the hash
values associates to the nodes of S (a toy hash function is used); (c) shows the
complete Bloom filter associated to S; incidentally, the nodes of B are exactly
those to which the Bloom filter answers positively; (d) describes the lower bound
for exactly encoding the nodes of S (self-information) and the space required to
encode our structure (Bloom filter, 10 bits, and 3 critical false positives, 6 bits
per 3-mer).



Using the same notations as in the definition of the Bloom filter, given that
n = |S|, the size of the filter m and the false positive rate F are related through
Equation 1. The expected size of cFP is 8n · F , since each node only has eight
possible extensions, which might be false positives. In the encoding of cFP ,
each k-mer occupies 2 · k bits. Recall that for a given false positive rate F , the
expected optimal Bloom filter size is 1.44n log2( 1

F ). The total structure size is
thus expected to be

1.44n log2

(
1

F

)

︸ ︷︷ ︸
Bloom filter

+ (16 · Fnk)

︸ ︷︷ ︸
cFP

bits (2)

The size is minimal for F ≈ (16k/2.08)−1. Thus, the minimal number of bits
required to store the Bloom filter and the set cFP is approximately

n · (1.44 log2(
16k

2.08
) + 2.08). (3)

For illustration, Figure 2-(a) shows the size of the structure for various Bloom
filter sizes and k = 27. For this value of k, the optimal size of the Bloom filter
is 11.1 bits per k-mer, and the total structure occupies 13.2 bits per k-mer.
Figure 2-(b) shows that k has only a modest influence on the optimal structure
size. Note that the size of the cFP structure is in fact independent of k.

In comparison, a Bloom filter with virtually no critical false positives would
require F · 8n < 1, i.e. r > 1.44 log2(8n). For a human genome (n = 2.4 · 109), r
would be greater than 49.2, yielding a Bloom filter of size 13.7 GB.

4 Additional marking structure for graph traversal

Many NGS applications, e.g. de novo assembly of genomes [?] and transcrip-
tomes [?], and de novo variant detection [?], rely on (i) simplifying and (ii)
traversing the de Bruijn graph. However, the graph as represented in the pre-
vious section neither supports (i) simplifications (as it is immutable) nor (ii)
traversals (as the Bloom filter cannot store an additional visited bit per node).
To address the former issue, we argue that the simplification step can be avoided
by designing a slightly more complex traversal procedure [?].

We introduce a novel, lightweight mechanism to record which portions of
the graph have already been visited. The idea behind this mechanism is that
not every node needs to be marked. Specifically, nodes that are inside simple
paths (i.e nodes having an in-degree of 1 and an out-degree of 1) will either
be all marked or all unmarked. We will refer to nodes having their in-degree
or out-degree different to 1 as complex nodes. We propose to store marking
information of complex nodes, by explicitly storing complex nodes in a separate
hash table. In de Bruijn graphs of genomes, the complete set of nodes dwarfs the
set of complex nodes, however the ratio depends on the genome complexity [?].
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Fig. 2: (a) Structure size (Bloom filter, critical false positives) in function of the
number of bits per k-mer allocated to the Bloom filter (also called ratio r) for
k = 32. The trade-off that optimizes the total size is shown in dashed lines. (b)
Optimal size of the structure for different values of k.

The memory usage of the marking structure is ncC, where nc is the number of
complex nodes in the graph and C is the memory usage of each entry in the
hash table (C ≈ 2k + 8).

5 Implementation

The de Bruijn graph structure described in this article was implemented in
a new de novo assembly software: Minia3. An important preliminary step is
to retrieve the list of distinct k-mers that appear in the reads, i.e. true graph
nodes. To discard likely sequencing errors, only the k-mers which appear at least
d times are kept (solid k-mers). We experimentally set d to 3. Classical methods
that retrieve solid k-mers are based on hash tables [?], and their memory usage
scale linearly with the number of distinct k-mers. To avoid using more memory
than the whole structure, we implemented a constant-memory k-mer counting
procedure (manuscript in preparation). To deal with reverse-complementation,
k-mers are identified to their reverse-complements.

We implemented in Minia a graph traversal algorithm that constructs a set
of contigs (gap-less sequences). The Bloom filter and the cFP structure are used
to determine neighbors of each node. The marking structure records already
traversed nodes. A bounded-depth, bounded-breadth BFS algorithm (following
Property 2 in [?]) is performed to traverse short, locally complex regions. Specif-
ically, the traversal ignores tips (dead-end paths) shorter than 2k + 1 nodes.

3 Source code available at http://minia.genouest.org/



It chooses a single path (consistently but arbitrarily), among all possible paths
that traverse graph regions of breadth ≤ 20, provided these regions end with a
single node of depth ≤ 500. These regions are assumed to be sequencing errors,
short variants or short repetitions of length ≤ 500 bp. The breadth limit pre-
vents combinatorial blowup. Note that paired-end reads information is not taken
into account in this traversal. In a typical assembly pipeline (e.g. [?]), a separate
program (scaffolder) can be used to link contigs using pairing information.

6 Results

Throughout the Results section, we will refer to the N50 metric of an assembly
as the longest contig size, such that half the assembly is contained in contigs
longer than this size.

6.1 On the usefulness of removing critical false positives

To test whether the combination of the Bloom filter and the cFP structure of-
fers an advantage over a plain probabilistic de Bruijn graph, we compared both
structures in terms of memory usage and assembly consistency. We retrieved 20
million E. coli short reads from the Short Read Archive (SRX000429), and dis-
carded pairing information. Using this dataset, we constructed the probabilistic
de Bruijn graph, the cFP structure, and marking structure, for various Bloom
filter sizes (ranging from 5 to 19 bits per k-mer) and k = 23 (yielding 4.7 M
solid k-mers).

We measured the memory usage of both structures. For each, we performed
an assembly using Minia with exactly the same traversal procedure. The as-
semblies were compared to a reference assembly (using MUMmer), made with
an exact graph. The percentage of nucleotides in contigs which aligned to the
reference assembly was recorded.

Figure 3 shows that both the probabilistic de Bruijn graph and our structure
have the same optimal Bloom filter size (11 bits per k-mer, total structure size
of 13.82 bits and 13.62 per k-mer respectively). In the case of the probabilistic
de Bruijn graph, the marking structure is prominent. This is because the graph
has a significant amount of complex k-mers, most of them are linked to false
positive nodes. For the graph equipped with the cFP structure, the marking
structure only records the actual complex nodes; it occupies consistently 0.49
bits per k-mer. Both structures have comparable memory usage.

However, Figure 3 shows that the probabilistic de Bruijn graph produces
assemblies which strongly depend on the Bloom filter size. Even for large sizes,
the probabilistic graph assemblies differ by more than 3 Kbp to the reference
assembly. We observed that the majority of these differences were due to miss-
ing regions in the probabilistic graph assemblies. This is likely caused by extra
branching, which shortens the lengths of some contigs (contigs shorter than 100
bp are discarded).

Below ≈ 9 bits per k-mer, probabilistic graph assemblies significantly deteri-
orate. This is consistent with another article [?], which observed that when the
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function of the number of bits per k-mer allocated to the Bloom filter. Addition-
ally, the difference is shown (bottom left and bottom right) between a reference
assembly made using an exact de Bruijn graph, and an assembly made with each
structure.



false positive rate is over 18% (i.e., the Bloom filter occupies ≤ 4 bits per k-
mer), distant nodes in the original graph become connected in the probabilistic
de Bruijn graph. To sum up, assemblies produced by the probabilistic de Bruijn
graph are prone to randomness, while those produced by our structure are exact.

6.2 de novo assembly

We assembled a complete human genome (NA18507, SRA:SRX016231, 142.3
Gbp of unfiltered reads of length ≈ 100 bp, representing 47x coverage) using
Minia. After k-mer counting, 2,712,827,800 solid k-mers (d = 3) were inserted
in a Bloom filter dimensioned to 11.1 bits per solid k-mer. The cFP structure
contained 78,762,871 k-mers, which were stored as a sorted list of 64 bits integers,
representing 1.86 bits per solid k-mer. A total of 166,649,498 complex k-mers
(6% of the solid k-mers) were stored in the marking structure using 4.42 bits
per solid k-mer (implementation uses 8d k

32e bytes per k-mer). Table 1 shows the
time and memory usage required for each step in Minia.

We compared our results with assemblies reported by the authors of ABySS [?],
SOAPdenovo [?], and the prototype assembler from Conway and Bromage [?].
Table 2 shows the results for four classical assembly quality metrics, and the
time and peak memory usage of the compared programs. We note that Minia
has the lowest memory usage (5.7 GB), seconded by the assembler from Conway
and Bromage (32 GB). The wall-clock execution time of Minia (23 h) is compa-
rable to the other assemblers; note that it is the only single-threaded assembler.
The N50 metric of our assembly (1.2 Kbp) is slightly above that of the other
assemblies (seconded by SOAPdenovo, 0.9 Kbp). All the programs except one
assembled 2.1 Gbp of sequences.

We furthermore assessed the accuracy of our assembly by aligning the contigs
produced by Minia to the GRCh37 human reference using GASSST [?]. Out of
the 2,090,828,207 nucleotides assembled, 1,978,520,767 nucleotides (94.6%) were
contained in contigs having a full-length alignment to the reference, with at
least 98% sequence identity. For comparison, 94.2% of the contigs assembled by
ABySS aligned full-length to the reference with 95% identity [?].

To test another recent assembler, SparseAssembler [?], the authors assembled
another dataset (NA12878), using much larger effective k values. SparseAssem-
bler stores an approximation of the de Bruijn graph, which can be compared
to a classical graph for k′ = k + g, where g is the sparseness factor. The re-
ported assembly of the NA12878 individual by SparseAssembler (k + g = 56)
has a N50 value of 2.1 Kbp and was assembled using 26 GB of memory, in a
day. As an attempt to perform a fair comparison, we increased the value of k
from 27 to 51 for the assembly done in Table 2 (k = 56 showed worse contigu-
ity). The N50 obtained by Minia (2.0 Kbp) was computed with respect to the
size of SparseAssembler assembly. Minia assembled this dataset using 6.1 GB of
memory in 27 h, a 4.2× memory improvement compared to SparseAssembler.



Step Time (h) Memory (Gb)

k-mer counting 11.1 Constant (set to 4.0)

Enumerating positive extensions 2.8 3.6 (Bloom filter)

Constructing cFP 2.9 Constant (set to 4.0)

Assembly 6.4 5.7 (Bloom f.+ cFP + mark. struct.)

Overall 23.2 5.7

Table 1: Details of steps implemented in Minia, with wall-clock time and memory
usage for the human genome assembly. For constant-memory steps, memory
usage was automatically set to an estimation of the final memory size. In all
steps, only one CPU core was used.

Method Minia C. & B. ABySS SOAPdenovo

Value of k chosen 27 27 27 25

Number of contigs (M) 3.49 7.69 4.35 -

Longest contig (Kbp) 18.6 22.0 15.9 -

Contig N50 (bp) 1156 250 870 886

Sum (Gbp) 2.09 1.72 2.10 2.08

Nb of nodes/cores 1/1 1/8 21/168 1/16

Time (wall-clock, h) 23 50 15 33

Memory (sum of nodes, GB) 5.7 32 336 140

Table 2: de novo human genome (NA18507) assemblies reported by our assembler
(Minia), Conway and Bromage assembler [?], ABySS [?], and SOAPdenovo [?].
Contigs shorter than 100 bp were discarded. Assemblies were made without any
pairing information.



7 Discussion

This article introduces a new, space-efficient representation of the de Bruijn
graph. The graph is implicitly encoded as a Bloom filter. A subset of false
positives, those which introduce false branching from true positive nodes, are
recorded in a separate structure. A new marking structure is introduced, in or-
der for any traversal algorithm to mark which nodes have already been visited.
The marking structure is also space-efficient, as it only stores information for a
subset of k-mers. Combining the Bloom filter, the critical false positives struc-
ture and the marking structure, we implemented a new memory-efficient method
for de novo assembly (Minia).

To the best of our knowledge, Minia is the first method that can create contigs
for a complete human genome on a desktop computer. Our method improves
the memory usage of de Bruijn graphs by two orders of magnitude compared
to ABySS and SOAPdenovo, and by roughly one order of magnitude compared
to succinct and sparse de Bruijn graph constructions. Furthermore, the current
implementation completes the assembly in 1 day using a single thread.

De Bruijn graphs have more NGS applications than just de novo assembly.
We plan to port our structure to replace the more expensive graph representa-
tions in two pipelines for reference-free alternative splicing detection, and SNP
detection [?,?]. We wish to highlight three directions for improvement. First,
some steps of Minia could be implemented in parallel, e.g. graph traversal. Sec-
ond, a more succinct structure can be used to mark complex k-mers. Two can-
didates are Bloomier filters [?] and minimal perfect hashing.

Third, the set of critical false positives could be reduced, by exploiting the
nature of the traversal algorithm used in Minia. The traversal ignores short tips,
and in general, graph regions that are eventually unconnected. One could then
define n-th order critical false positives (n-cFP ) as follows. An extension of a
true positive graph node is a n-cFP if and only if a breadth-first search from
the true positive node, in the direction of the extension, has at least one node
of depth n + 1. In other words, false positive neighbors of the original graph
which are part of tips, and generally local dead-end graph structures, will not be
flagged as critical false positives. This is an extension of the method presented in
this article which, in this notation, only detects 0-th order critical false positives.
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Abstract. De Brujin graphs are widely used in bioinformatics for pro-
cessing next-generation sequencing (NGS) data. Due to the very large size
of NGS datasets, it is essential to represent de Bruijn graphs compactly,
and several approaches to this problem have been proposed recently. In
this work, we show how to reduce the memory required by the algorithm
of Chikhi and Rizk (WABI, 2012) that represents de Brujin graphs using
Bloom filters. Our method requires 30% to 40% less memory with re-
spect to their method, with insignificant impact to construction time. At
the same time, our experiments showed a better query time compared to
their method. This is, to our knowledge, the best practical representation
for de Bruijn graphs.

1 Introduction

Modern next-generation sequencing (NGS) technologies generate huge volumes
of short nucleotide sequences (reads) drawn from the DNA sample under study.
The length of a read varies from 35 to about 400 base pairs (letters) and the
number of reads may be hundreds of millions, thus the total volume of data may
reach tens or even hundreds of Gb.

Many computational tools dealing with NGS data, especially those devoted
to genome assembly, are based on the concept of a de Bruijn graph, see e.g. [8].
The nodes of the de Bruijn graph1 are all distinct k-mers occurring in the reads,
and two k-mers are linked by an arc if there is a suffix-prefix overlap of size
k − 1. The value of k is an open parameter, that in practice is chosen between
20 and 64. The idea of using de Bruijn graph for genome assembly goes back to
the “pre-NGS era” [11]. Note, however, that de novo genome assembly is not the
only application of those graphs when dealing with NGS data. There are several

1 Note that this actually a subgraph of the de Bruijn graph under its classical combi-
natorial definition. However, we still call it de Bruijn graph to follow the terminology
common to the bioinformatics literature.



others, including: de novo transcriptome assembly [5] and de novo alternative
splicing calling [14] from transcriptomic NGS data (RNA-seq); metagenome as-
sembly [10] from metagenomic NGS data; and genomic variant detection [6] from
genomic NGS data using a reference genome.

Due to the very large size of NGS datasets, it is essential to represent de
Bruijn graphs as compactly as possible. This has been a very active line of
research. Recently, several papers have been published that propose different
approaches to compressing de Bruijn graphs [4,15,3,2,9].

Conway and Bromage [4] proposed a method based on classical succinct
data structures, i.e. bitmaps with efficient rank/select operations. On the same
direction, Bowe et al. [2] proposed a very interesting succinct representation that,
assuming only one string (read) is present, uses only 4m bits, where m is the
number of arcs in the graph. The more realistic case, where there are M reads,
can be easily reduced to the one string case by concatenating all M reads using
a special separator character. However, in this case the size of the structure is
4m+O(M logm) bits ([2], Theorem 1). Since the multiplicative constant of the
second term is hidden by the asymptotic notation, it is hard to know precisely
what would be the size of this structure in practice.

Ye at al. [15] proposed a different method based on a sparse representation
of de Bruijn graphs, where only a subset of k-mers present in the dataset are
stored. Pell et al. [9] proposed a method to represent it approximately, the so
called probabilistic de Bruijn graph. In their representation a node have a small
probability to be a false positive, i.e. the k-mer is not present in the dataset.
Finally, Chikhi and Rizk [3] improved Pell’s scheme in order to obtain an exact
representation of the de Bruijn graph. This was, to our knowledge, the best
practical representation of an exact de Bruijn graph.

In this work, we focus on the method proposed in [3] which is based on Bloom
filters. They were first used in [9] to provide a very space-efficient representation
of a subset of a given set (in our case, a subset of k-mers), at the price of
allowing one-sided errors, namely false positives. The method of [3] is based
on the following idea: if all queried nodes (k-mers) are only those which are
reachable from some node known to belong to the graph, then only a fraction
of all false positives can actually occur. Storing these false positives explicitly
leads to an exact (false positive free) and space-efficient representation of the de
Bruijn graph.

Our contribution is an improvement of this scheme by changing the repre-
sentation of the set of false positives. We achieve this by iteratively applying a
Bloom filter to represent the set of false positives, then the set of “false false
positives” etc. We show analytically that this cascade of Bloom filters allows for
a considerable further economy of memory, improving the method of [3]. De-
pending on the value of k, our method requires 30% to 40% less memory with
respect to the method of [3]. Moreover, with our method, the memory grows
very little as k grows. Finally, we implemented our method and tested it against
[3] on real datasets. The tests confirm the theoretical predictions for the size of
structure and show a 20% to 30% improvement in query times.



2 Preliminaries

A Bloom filter is a space-efficient data structure for representing a given subset
of elements T ⊆ U , with support for efficient membership queries with one-sided
error. That is, if a query for an element x ∈ U returns no then x /∈ T , but if
it returns yes then x may or not belong to T , i.e. with small probability x /∈ T
(false positive). It consists of a bitmap (array of bits) B with size m and a set of
p distinct hash functions {h1, . . . , hp}, where hi : U 7→ {0, . . . ,m− 1}. Initially,
all bits of B are set to 0. An insertion of an element x ∈ T is done by setting
the elements of B with indices h1(x), . . . , hp(x) to 1, i.e. B[hi(x)] = 1 for all
i ∈ [1, p]. The membership queries are done symmetrically, returning yes if all
B[hi(x)] are equal 1 and no otherwise. As shown in [7], when considering hash
functions that yield equally likely positions in the bit array, and for large enough
array size m and number of inserted elements n, the false positive rate F is

F ≈ (1− e−pn/m)p = (1− e−p/r)p (1)

where r = m/n is the number of bits (of the bitmap B) per element (of T
represented). It is not hard to see that this expression is minimized when p =
r ln 2, giving a false positive rate of

F ≈ (1− e−p/r)p = (1/2)p ≈ 0.6185r. (2)

A de Bruijn graph, for a given parameter k, of a set of reads (strings) R ⊆
Σ∗ = {A,C, T,G}∗ is entirely defined by the set T ⊆ U = Σk of k-mers present
in R. The nodes of the graph are precisely the k-mers of T and for any two
vertices u, v ∈ T , there is an arc from u to v if the suffix of u of size k − 1 is
equal to the prefix of v of the same size. Thus, given a set T ⊆ U of k-mers
we can represent its de Bruijn graph using a Bloom filter B. This approach has
the disadvantage of having false positive nodes, as direct consequence of the
false positive queries in the Bloom filter, which can create false connections in
the graph (see [9] for the influence of false positive nodes on the topology of the
graph). The naive way to remove those false positives nodes, by explicitly storing
(e.g. using a hash table) the set of all false positives of B, is clearly inefficient,
as the expected number of elements to be explicitly stored is |U |F = 4kF .

The key idea of [3] is to explicitly store only a subset of all false positives of B,
the so-called critical false positives. This is possible because in order to perform
an exact (without false positive nodes) graph traversal, only potential neighbors
of nodes in T are queried. In other words, the set of critical false positives consists
of the potential neighbors of T that are false positives of B, i.e. the k-mers from
U that overlap the k-mers from T by k − 1 letters and are false positives of B.
Thus, the size of the set of critical false positives is bounded by 8|T |, since each
node of T has at most 2|Σ| = 8 neighbors (for each node, there are |Σ| k-mers
overlapping the k− 1 suffix and |Σ| overlapping the k− 1 prefix). Therefore, the
expected number of critical false positives can be upper-estimated by 8|T |F .



3 Cascading Bloom filter

Let R be a set of reads and T0 be the set of occurring k-mers (nodes of the
de Brujin graph) that we want to store. As stated in Section 2, the method of
[3] stores T0 via a bitmap B1 using a Bloom filter, together with the set T1 of
critical false positives. T1 consists of those k-mers which have a k − 1 overlap
with k-mers from T0 but which are stored in B1 “by mistake”, i.e. belong2 to B1

but not to T0. B1 and T1 are sufficient to represent the graph provided that the
only queried k-mers are those which are potential neighbors of k-mers of T0.

The idea we introduce in this work is to use this structure recursively and
represent the set T1 by a new bitmap B2 and a new set T2, then represent T2
by B3 and T3, and so on. More formally, starting from B1 and T1 defined as
above, we define a series of bitmaps B1, B2, . . . and a series of sets T1, T2, . . . as
follows. B2 stores the set of false positives T1 using another Bloom filter, and
the set T2 contains the critical false positives of B2, i.e. “true nodes” from T0
that are stored in B2 “by mistake” (we call them false2 positives). B3 and T3,
and, generally, Bi and Ti are defined similarly: Bi stores k-mers of Ti−1 using a
Bloom filter, and Ti contains k-mers stored in Bi “by mistake”, i.e. those k-mers
that do not belong to Ti−1 but belong to Ti−2 (we call them falsei positives).
Observe that T0 ∩ T1 = ∅, T0 ⊇ T2 ⊇ T4 . . . and T1 ⊇ T3 ⊇ T5 . . ..

The following lemma shows that the construction is correct, that is it allows
one to verify whether or not a given k-mer belongs to the set T0.

Lemma 1. Given a k-mer (node) K, consider the smallest i such that K 6∈ Bi+1

(if K 6∈ B1, we define i = 0). Then, if i is odd, then K ∈ T0, and if i is even
(including 0), then K 6∈ T0.

Proof. Observe that K 6∈ Bi+1 implies K 6∈ Ti by the basic property of Bloom
filters that membership queries have one-sided error, i.e. there are no false neg-
atives. We first check the Lemma for i = 0, 1.

For i = 0, we have K 6∈ B1, and then K 6∈ T0.
For i = 1, we have K ∈ B1 but K 6∈ B2. The latter implies that K 6∈ T1, and

then K must be a false2 positive, that is K ∈ T0. Note that here we use the fact
that the only queried k-mers K are either nodes of T0 or their neighbors in the
graph (see [3]), and therefore if K ∈ B1 and K 6∈ T0 then K ∈ T1.

For the general case i ≥ 2, we show by induction that K ∈ Ti−1. Indeed,
K ∈ B1∩. . .∩Bi implies K ∈ Ti−1∪Ti (which, again, is easily seen by induction),
and K 6∈ Bi+1 implies K 6∈ Ti.

Since Ti−1 ⊆ T0 for odd i, and Ti−1 ⊆ T1 for even i (for T0 ∩ T1 = ∅), the
lemma follows.

Naturally, the lemma provides an algorithm to check if a given k-mer K
belongs to the graph: it suffices to check successively if it belongs to B1, B2, . . .
until we encounter the first Bi+1 which does not contain K. Then, the answer

2 By a slight abuse of language, we say that “an element belongs to Bj” if it is accepted
by the corresponding Bloom filter.



will simply depend on whether i is even or odd: K belongs to the graph if and
only if i is odd.

In our reasoning so far, we assumed an infinite number of bitmaps Bi. Of
course, in practice we cannot store infinitely many (and even simply many)
bitmaps. Therefore, we “truncate” the construction at some step t and store a
finite set of bitmaps B1, B2, . . . , Bt together with an explicit representation of
Tt. The procedure of Lemma 1 is extended in the obvious way: if for all 1 ≤ i ≤ t,
K ∈ Bi, then the answer is determined by directly checking K ∈ Tt.

4 Memory and time usage

First, we estimate the memory needed by our data structure, under the assump-
tion of an infinite number of bitmaps. Let N be the number of “true positives”,
i.e. nodes of T0. As stated in Section 2, if T0 has to be stored via a bitmap B1 of
size rN , the false positive rate can be estimated as cr, where c = 0.6185. And,
the expected number of critical false positive nodes (set T1) has been estimated
in [3] to be 8Ncr, as every node has eight extensions, i.e. potential neighbors in
the graph. We slightly refine this estimation to 6Ncr by noticing that for most of
the graph nodes, two out of these eight extensions belong to T0 (are real nodes)
and thus only six are potential false positives. Furthermore, to store these 6Ncr

critical false positive nodes, we use a bitmap B2 of size 6rNcr. Bitmap B3 is used
for storing nodes of T0 which are stored in B2 “by mistake” (set T2). We estimate
the number of these nodes as the fraction cr (false positive rate of filter B2) of
N (size of T0), that is Ncr. Similarly, the number of nodes we need to put to B4

is 6Ncr multiplied by cr, i.e. 6Nc2r. Keeping counting in this way, the memory
needed for the whole structure is rN + 6rNcr + rNcr + 6rNc2r + rNc2r + ...
bits. The number of bits per k-mer is then

r+ 6rcr + rcr + 6rc2r + ... = (r+ 6rcr)(1 + cr + c2r + ...) = (1 + 6cr)
r

1− cr . (3)

A simple calculation shows that the minimum of this expression is achieved when
r = 5.464, and then the minimum memory used per k-mer is 8.45 bits.

As mentioned earlier, in practice we store only a finite number of bitmaps
B1, . . . , Bt together with an explicit representation (such as array or hash table)
of Tt. In this case, the memory taken by the bitmaps is a truncated sum rN +
6rNcr + rNcr + .., and a data structure storing Tt takes either 2k · Ncd t

2 er or
2k · 6Ncd t

2 er bits, depending on whether t is even or odd. The latter follows
from the observations that we need to store Ncd

t
2 er (or 6rNcd

t
2 er) k-mers, each

taking 2k bits of memory. Consequently, we have to adjust the optimal value of
r minimizing the total space, and re-estimate the resulting space spent on one
k-mer.

Table 1 shows estimations for optimal values of r and the corresponding space
per k-mer for t = 4 and t = 6, and several values of k. The data demonstrates
that even such small values of t lead to considerable memory savings. It ap-
pears that the space per k-mer is very close to the “optimal” space (8.45 bits)



obtained for the infinite number of filters. Table 1 reveals another advantage of
our improvement: the number of bits per stored k-mer remains almost constant
for different values of k.

k optimal r bits per k-mer optimal r bits per k-mer bits per k-mer

for t = 4 for t = 4 for t = 6 for t = 6 for t = 1 ([3])

16 5.777 8.556 5.506 8.459 12.078

32 6.049 8.664 5.556 8.47 13.518

64 6.399 8.824 5.641 8.49 14.958

128 6.819 9.045 5.772 8.524 16.398

Table 1. 1st column: k-mer size; 2nd and 4th columns: optimal value of r for Bloom
filters (bitmap size per number of stored elements) for t = 4 and t = 6 respectively;
3rd and 5th columns: the resulting space per k-mer (for t = 4 and t = 6); 6th column:
space per k-mer for the method of [3] (t = 1)

The last column of Table 1 shows the memory usage of the original method of
[3], obtained using the estimation (1.44 log2( 16k

2.08 ) + 2.08) the authors provided.
Note that according to that estimation, doubling the value of k results in a
memory increment by 1.44 bits, whereas in our method the increment is of 0.11
to 0.22 bits.

Let us now estimate preprocessing and query times for our scheme. If the
value of t is small (such as t = 4, as in Table 1), the preprocessing time grows
insignificantly in comparison to the original method of [3]. To construct each Bi,
we need to store Ti−2 (possibly on disk, if we want to save on the internal memory
used by the algorithm) in order to compute those k-mers which are stored in
Bi−1 “by mistake”. The preprocessing time increases little in comparison to the
original method of [3], as the size of Bi decreases exponentially and then the
time spent to construct the whole structure is linear on the size of T0.

The query time can be split in two parts: the time spent on querying t Bloom
filters and the time spent on querying Tt. Clearly, using t Bloom filters instead
of a single one introduces a multiplicative factor of t to the first part of the query
time. On the other hand, the set Tt is generally much smaller than T1, due to
the above-mentioned exponential decrease. Depending on the data structure for
storing Tt, the time saving in querying Tt vs. T1 may even dominate the time loss
in querying multiple Bloom filters. Our experimental results (Section 5.1 below)
confirm that this situation does indeed occur in practice. Note that even in the
case when querying Tt weakly depends on its size (e.g. when Tt is implemented
by a hash table), the query time will not increase much, due to our choice of a
small value for t, as discussed earlier.



4.1 Using different values of r for different filters

In the previous section, we assumed that each of our Bloom filters uses the same
value of r, the ratio of bitmap size to the number of stored k-mers. However,
formula (3) for the number of bits per k-mer shows a difference for odd and
even filter indices. This suggests that using different parameters r for different
filters, rather than the same for all filters, may reduce the space even further. If
ri denotes the corresponding ratio for filter Bi, then (3) should be rewritten to

r1 + 6r2c
r1 + r3c

r2 + 6r4c
r1+r3 + ..., (4)

and the minimum value of this expression becomes 7.93 (this value is achieved
with r1 = 4.41; ri = 1.44, i > 1).

In the same way, we can use different values of ri in the truncated case. This
leads to a small 2% to 4% improvement in comparison with case of unique value
of r. Table 2 shows results for the case t = 4 for different values of k.

k r1, r2, r3, r4 bits per k-mer bits per k-mer

different values of r single value of r

16 5.254, 3.541, 4.981, 8.653 8.336 8.556

32 5.383, 3.899, 5.318, 9.108 8.404 8.664

64 5.572, 4.452, 5.681, 9.108 8.512 8.824

128 5.786, 5.108, 6.109, 9.109 8.669 9.045

Table 2. Estimated memory occupation for the case of different values of r vs. single
value of r, for 4 Bloom filters (t = 4). Numbers in the second column represent values
of ri on which the minimum is achieved. For the case of single r, its value is shown in
Table 1.

5 Experimental results

5.1 Implementation and experimental setup

We implemented our method using the Minia software [3] and ran comparative
tests for 2 and 4 Bloom filters (t = 2, 4). Note that since the only modified part of
Minia was the construction step and the k-mer membership queries, this allows
us to precisely evaluate our method against the one of [3].

The first step of the implementation is to retrieve the list of k-mers that
appear more than d times using DSK [13] – a constant memory streaming al-
gorithm to count k-mers. Each k-mer appearing more than d times (set T0) is
inserted into B1. Next, all possible extensions of each k-mer in T0 are queried



against B1, and those which return true are written to the disk. Then, this set
is traversed and only the k-mers absent from T0 are kept. This results in the
set T1 of critical false positives, which is also kept on disk. Up to this point, the
procedure is identical to that of [3].

Next, we insert all k-mers from T1 into B2 and to obtain T2, we check for
each k-mer in T0 if a query to B2 returns true. This results in the set T2. Thus,
at this point we have B1, B2 and T2, a complete representation for t = 2. In
order to build the data structure for t = 4, we continue this process, by inserting
T2 in B3 and retrieving T3 from T1 (stored on disk). It should be noted that to
obtain Ti we need Ti−2, and by always storing it on disk we guarantee not to
use more memory than the size of the final structure. The set Tt (that is, T1, T2
or T4 in our experiments) is stored as a sorted array and is searched by a binary
search. We found this implementation more efficient than a hash table.

Assessing the query time is done through the procedure of graph traversal,
as it is implemented in [3]. Since the procedure is identical and independent on
the data structure, the time spent on graph traversal is a faithful estimator of
the query time.

We compare three versions: t = 1 (i.e. the version of [3]), t = 2 and t = 4.
For convenience, we define 1 Bloom, 2 Bloom and 4 Bloom as the versions with
t = 1, 2 and 4, respectively.

5.2 E.coli dataset, varying k

In this set of tests, our main goal was to evaluate the influence of the k-mer size
on principal parameters: size of the whole data structure, size of the set Tt, graph
traversal time, and time of construction of the data structure. We retrieved 10M
E. coli reads of 100bp from the Short Read Archive (ERX008638) without read
pairing information and extracted all k-mers occurring at least two times. The
total number of k-mers considered varied, depending on the value of k, from
6,967,781 (k = 15) to 5,923,501 (k = 63). We ran each version, 1 Bloom ([3]),
2 Bloom and 4 Bloom, for values of k ranging from 16 to 64. The results are
shown in Fig. 1.

The total size of the structures in bits per stored k-mer, i.e. the size of
B1 and T1 (respectively, B1, B2,T2 or B1, B2, B3, B4,T4) is shown in Fig. 1(a).
As expected, the space for 4 Bloom filters is the smallest for all values of k
considered, showing a considerable improvement, ranging from 32% to 39%,
over the version of [3]. Even the version with just 2 Bloom filters shows an
improvement of at least 20% over [3], for all values of k. Regarding the influence
of the k-mer size on the structure size, we observe that for 4 Bloom filters the
structure size is almost constant, the minimum value is 8.60 and the largest
is 8.89, an increase of only 3%. For 1 and 2 Bloom the same pattern is seen: a
plateau from k = 16 to 32, a jump for k = 33 and another plateau from k = 33 to
64. The jump at k = 32 is due to switching from 64-bit to 128-bit representation
of k-mers in the table Tt.

The traversal times for each version is shown in Fig. 1(c). The fastest version
is 4 Bloom, showing an improvement over [3] of 18% to 30%, followed by 2



Bloom. This result is surprising and may seem counter-intuitive, as we have four
filters to apply to the queried k-mer rather than a single filter as in [3]. However,
the size of T4 (or even T2) is much smaller than T1, as the size of Ti’s decreases
exponentially. As Tt is stored in an array, the time economy in searching T4 (or
T2) compared to T1 dominates the time lost on querying additional Bloom filters,
which explains the overall gain in query time.

As far as the construction time is concerned (Fig. 1(d)), our versions yielded
also a faster construction, with the 4 Bloom version being 5% to 22% faster
than that of [3]. The gain is explained by the time required for sorting the array
storing Tt, which is much higher for T0 than for T2 or T4. However, the gain is
less significant here, and, on the other hand, was not observed for bigger datasets
(see Section 5.4).

5.3 E. coli dataset, varying coverage

From the complete E. coli dataset (≈44M reads) from the previous section,
we selected several samples ranging from 5M to 40M reads in order to assess
the impact of the coverage on the size of the data structures. This strain E.
coli (K-12 MG1655) is estimated to have a genome of 4.6M bp [1], implying
that a sample of 5M reads (of 100bp) corresponds to ≈100X coverage. We set
d = 3 and k = 27. The results are shown in Fig. 2. As expected, the memory
consumption per k-mer remains almost constant for increasing coverage, with
a slight decrease for 2 and 4 Bloom. The best results are obtained with the 4
Bloom version, an improvement of 33% over the 1 Bloom version of [3]. On the
other hand, the number of distinct k-mers increases markedly (around 10% for
each 5M reads) with increasing coverage, see Fig. 2(b). This is due to sequencing
errors: an increase in coverage implies more errors with higher coverage, which
are not removed by our cutoff d = 3. This suggests that the value of d should
be chosen according to the coverage of the sample. Moreover, in the case where
read qualities are available, a quality control pre-processing step may help to
reduce the number of sequencing errors.

5.4 Human dataset

We also compared 2 and 4 Bloom versions with the 1 Bloom version of [3]
on a large dataset. For that, we retrieved 564M Human reads of 100bp (SRA:
SRX016231) without pairing information and discarded the reads occurring less
than 3 times. The dataset corresponds to≈17X coverage. A total of 2,455,753,508
k-mers were indexed. We ran each version, 1 Bloom ([3]), 2 Bloom and 4 Bloom
with k = 23. The results are shown in Table 3.

The results are in general consistent with the previous tests on E.coli datasets.
There is an improvement of 34% (21%) for the 4 Bloom (2 Bloom) in the size
of the structure. The graph traversal is also 26% faster in the 4 Bloom version.
However, in contrast to the previous results, the graph construction time in-
creased by 10% and 7% for 4 and 2 Bloom versions respectively, when compared
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Fig. 1. Results for 10M E.coli reads of 100bp using several values of k. The 1 Bloom
version corresponds to the one presented in [3]. (a) Size of the structure in bits used per
k-mer stored. (b) Number of false positives stored in T1, T2 or T4 for 1, 2 or 4 Bloom
filters, respectively. (c) De Bruijn graph construction time, excluding k-mer counting
step. (d) De Bruijn graph traversal time, including branching k-mer indexing.
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Fig. 2. Results for E.coli reads of 100bp using k = 27. The 1 Bloom version corresponds
to the one presented in [3]. (a) Size of the structure in bits used per k-mer stored. (b)
Number of distinct k-mers.

to the 1 Bloom version. This is due to the fact that disk writing/reading oper-
ations now dominate the time for the graph construction, and 2 and 4 Bloom
versions generate more disk accesses than 1 Bloom. As stated in Section 5.1,
when constructing the 1 Bloom structure, the only part written on the disk is
T1 and it is read only once to fill an array in memory. For 4 Bloom, T1 and T2
are written to the disk, and T0 and T1 are read at least one time each to build
B2 and B3. Moreover, since the size coefficient of B1 reduces, from r = 11.10 in
1 Bloom to r = 5.97 in 4 Bloom, the number of false positives in T1 increases.

6 Discussion and Conclusions

Using cascading Bloom filters for storing de Bruijn graphs brings a clear advan-
tage over the single-filter method of [3]. In terms of memory consumption, which
is the main parameter here, we obtained an improvement of around 30%-40%
in all our experiments. Our data structure takes 8.5 to 9 bits per stored k-mer,
compared to 13 to 15 bits by the method of [3]. This confirms our analytical
estimations. The above results were obtained using only four filters and are very
close to the estimated optimum (around 8.4 bits/k-mer) produced by the infi-
nite number of filters. An interesting characteristic of our method is that the
memory grows insignificantly with the growth of k, even slower than with the
method of [3]. Somewhat surprisingly, we also obtained a significant decrease,
of order 20%-30%, of query time. The construction time of the data structure
varied from being 10% slower (for the human dataset) to 22% faster (for the
bacterial dataset).



Method 1 Bloom 2 Bloom 4 Bloom

Construction time (s) 40160.7 43362.8 44300.7

Traversal time (s) 46596.5 35909.3 34177.2

r coefficient 11.10 7.80 5.97

Bloom filters size (MB)

B1 = 3250.95 B1 = 2283.64 B1 = 1749.04

B2 = 323.08 B2 = 591.57

B3 = 100.56

B4 = 34.01

False positive table size (MB) T1 = 545.94 T2 = 425.74 T4 = 36.62

Total size (MB) 3796.89 3032.46 2511.8

Size (bits/k-mer) 12.96 10.35 8.58

Table 3. Results of 1, 2 and 4 Bloom filters version for 564M Human reads of 100bp
using k = 23. The 1 Bloom version corresponds to the one presented in [3].

As stated previously, another compact encoding of de Bruijn graphs has been
proposed in [2], however no implementation of the method was made available.
For this reason, we could not experimentally compare our method with the one
of [2]. We remark, however, that the space bound of [2] heavily depends on the
number of reads (i.e. coverage), while in our case, the data structure size is
almost invariant with respect to the coverage (Section 5.3).

An interesting prospect for further possible improvements of our method is
offered by work [12], where an efficient replacement to Bloom filter was intro-
duced. The results of [12] suggest that we could hope to reduce the memory to
about 5 bits per k-mer. However, there exist obstacles on this way: an imple-
mentation of such a structure would probably result in a significant construction
and query time increase.
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