
Space-efficient and exact de Bruijn graph
representation based on a Bloom filter

Rayan Chikhi1 and Guillaume Rizk2

1 Computer Science department, ENS Cachan/IRISA, 35042 Rennes, France
2 Algorizk, 75013 Paris, France

Abstract. The de Bruijn graph data structure is widely used in next-
generation sequencing (NGS). Many programs, e.g. de novo assemblers,
rely on in-memory representation of this graph. However, current tech-
niques for representing the de Bruijn graph of a human genome require
a large amount of memory (≥ 30 GB).

We propose a new encoding of the de Bruijn graph, which occupies an
order of magnitude less space than current representations. The encoding
is based on a Bloom filter, with an additional structure to remove critical
false positives. An assembly software implementing this structure, Minia,
performed a complete de novo assembly of human genome short reads
using 5.7 Gb of memory in 23 hours.

1 Introduction

The de Bruijn graph of a set of DNA or RNA sequences is a data structure
which plays an increasingly important role in next-generation sequencing ap-
plications. It was first introduced to perform de novo assembly of DNA se-
quences [5]. It has recently been used in a wider set of applications: de novo
mRNA [4] and meta-genome [13] assembly, genomic variants detection [14,6]
and de novo alternative splicing calling [17]. However, an important practical
issue of this structure is its high memory footprint for large organisms. For
instance, the straightforward encoding of the de Bruijn graph for the human
genome (n ≈ 2.4 ·109, k-mer size k = 25) requires 15 GB of memory to store the
nodes sequences alone. Graphs for much larger genomes and meta-genomes can-
not be constructed on a typical lab cluster, because of the prohibitive memory
usage.

Recent research on de Bruijn graphs has been targeted on designing more
lightweight data structures. Li et al. pioneered minimum-information de Bruijn
graphs, by not recording read locations and paired-end information [9]. Simpson
et al. implemented a distributed de Bruijn graph to reduce the memory usage per
node [18]. Conway and Bromage applied sparse bit array structures to store an
implicit, immutable graph representation [3]. Targeted methods compute local
assemblies around sequences of interest, using negligible memory, with greedy
extensions [19] or portions of the de Bruijn graph [15]. Ye et al. recently showed
that a graph roughly equivalent to the de Bruijn graph can be obtained by
storing only one out of g nodes (10 ≤ g ≤ 25) [20].

Conway and Bromage observed that the self-information of the edges is a
lower bound for exactly encoding the de Bruijn graph [3]:

log2(
(

4k+1

|E|

)
) bits,

where k + 1 is the length of the sequence that uniquely defines an edge, and |E|
is the number of edges. In this article, we will consider for simplicity that a de
Bruijn graph is fully defined by its nodes. A similar lower bound can then be
derived from the self-information of the nodes. For a human genome graph, the
self-information of |N | ≈ 2.4 · 109 nodes is log2(

(
4k

|N |
)
) ≈ 5.6 GB for k = 25, i.e.

≈ 20 bits per node.
A very recent article [12] from Pell et al. introduced the probabilistic de

Bruijn graph, which is a de Bruijn graph stored as a Bloom filter (described in
the next section). It is shown that the graph can be encoded with as little as 4
bits per node. An important drawback of this representation is that the Bloom
filter introduces false nodes and false branching. However, they observe that the
global structure of the graph is approximately preserved, up to a certain false
positive rate. Pell et al. did not perform assembly directly by traversing the
probabilistic graph. Instead, they use the graph to partition the set of reads into
smaller sets, which are then assembled in turns using a classical assembler. In
the arXiv version of [12] (Dec 2011), it is unclear how much memory is required
by the partitioning algorithm.

In this article, we focus on encoding an exact representation of the de Bruijn
graph that efficiently implements the following operations:

1. For any node, enumerate its neighbors
2. Sequentially enumerate all the nodes

The first operation requires random access, hence is supported by a structure
stored in memory. Specifically, we show that a probabilistic de Bruijn graph can
be used to perform the first operation exactly, by recording a set of troublesome
false positives. The second operation can be done with sequential access to the
list of nodes stored on disk. One highlight of our scheme is that the resulting
memory usage is shown to be

1.44 log2(
16k

2.08
) + 2.08 bits/k-mer.

For the human genome example above and k = 25, the size of the structure is
3.9 GB, i.e. 13 bits per node. This is effectively below the self-information of
the nodes. While this may appear surprising, this structure does not store the
precise set of nodes in memory. In fact, compared to a classical de Bruijn graph,
the membership of an arbitrary node cannot be efficiently answered by this
representation. However, for the purpose of many applications (e.g. assembly),
these membership queries are not needed.

We apply this representation to perform de novo assembly by traversing the
graph. In our context, we refer by traversal to any algorithm which visits all the

nodes of the graph exactly once (e.g. a depth-first search algorithm). Thus, a
mechanism is needed to mark which nodes have already been visited. However,
nodes of a probabilistic de Bruijn graph cannot store additional information.
We show that recording only the visited complex nodes (those with in-degree or
out-degree different to 1) is a space-efficient solution. The combination of (i) the
probabilistic de Bruijn graph along with the set of critical false positives, and
(ii) the marking scheme, enables to perform very low-memory de novo assembly.

In the first Section, the notions of de Bruijn graphs and Bloom filters are
formally defined. Section 3 describes our scheme for exactly encoding the de
Bruijn graph using a Bloom filter. Section 4 presents a solution for traversing
our representation of the de Bruijn graph. Section 6 presents two experimental
results: (i) an evaluation of the usefulness of removing false positives and (ii) an
assembly of a real human dataset using an implementation of the structure. A
comparison is made with other recent assemblers based on de Bruijn graphs.

2 de Bruijn graphs and Bloom filters

The de Bruijn graph [5], for a set of strings S, is a directed graph. Its nodes are
all the k-length substrings (also called k-mers) of each string in S. An edge s1 →
s2 is present if the (k− 1)-length suffix of s1 is a also a prefix of s2. Throughout
this article, we will indifferently refer to a node and its k-mer sequence as the
same object.

The Bloom filter [8] is a space efficient hash-based data structure, designed
to test whether an element is in a set. It consists of a bit array of m bits,
initialized with zeros, and h hash functions. To insert or test the membership
of an element, h hash values are computed, yielding h array positions. The
insert operation corresponds to setting all these positions to 1. The membership
operation returns yes if and only if all of the bits at these positions are 1. A no
answer means the element is definitely not in the set. A yes answer indicates that
the element may or may not be in the set. Hence, the Bloom filter has one-sided
errors. The probability of false positives increase with the number of elements
inserted in the Bloom filter. When considering hash functions that yield equally
likely positions in the bit array, and for large enough array size m and number
of inserted elements n, the false positive rate F is [8]:

F ≈
(

1− e−hn/m
)h

=
(

1− e−h/r
)h

(1)

where r = m/n is the number of bits per element. For a fixed ratio r, minimizing
Equation 1 yields the optimal number of hash functions h ≈ 0.7r, for which F
is approximately 0.6185r. Solving Equation 1 for m, still assuming that h is the

optimal number of hash function, yields m ≈ 1.44 log2(
1
F

)n.
The probabilistic de Bruijn graph is obtained by inserting all the nodes

of a de Bruijn graph (i.e all k-mers) in a Bloom filter [12]. Edges are implicitly

deduced by querying the Bloom filter for the membership of all possible exten-
sions of a k-mer. Specifically, an extension of a k-mer v is the concatenation of
either (i) the k − 1 suffix of v with one of the four possible nucleotides, or (ii)
one of the four nucleotides with the k−1 prefix of v. The probabilistic de Bruijn
graph holds an over-approximation of the original de Bruijn graph. Querying the
Bloom filter for the existence of an arbitrary node may return a false positive
answer (but never a false negative). This introduces false branching between
original and false positive nodes.

3 Removing critical false positives

3.1 The cFP structure

Our contribution is a mechanism that avoids false branching. Specifically, we
propose to detect and store false positive elements which are responsible for false
branching, in a separate structure. To this end, we introduce the cFP structure
of critical False Positives k-mers, implemented with a standard set allowing fast
membership test. Each query to the Bloom filter is modified such that the yes
answer is returned if and only if the Bloom filter answers yes and the element
is not in cFP .

Naturally, if cFP contained all the false positives elements, the benefits of
using a Bloom filter for memory efficiency would be lost. The key observation
is that the k-mers which will be queried when traversing the graph are not all
possible k-mers. Let S be the set of true positive nodes, and E be the set of
extensions of nodes from S. Assuming we only traverse the graph by starting
from a node in S, false positives that do not belong to E will never be queried.
Therefore, the set cFP will be a subset of E . Let P be the set of all elements of
E for which the Bloom filter answers yes. The set of critical false positives
cFP is then formally defined as cFP = P \ S.

Figure 1 shows a simple graph with the set S of correct nodes in black and
cFP in red. The exact representation of the graph is therefore made of two data
structures: the Bloom filter, and the set cFP of critical false positives. The set
cFP can be constructed using an algorithm that limits its memory usage, e.g.
to the size of the Bloom filter. The set P is created on disk, from which cFP is
then gradually constructed using partitions of S loaded in memory.

3.2 Dimensioning the Bloom filter for minimal memory usage

The set cFP grows with the number of false positives. To optimize memory
usage, a trade-off between the sizes of the Bloom filter and cFP is studied here.

Using the same notations as in the definition of the Bloom filter, given that
n = |S|, the size of the filter m and the false positive rate F are related through
Equation 1. The expected size of cFP is 8n · F , since each node only has eight
possible extensions, which might be false positives. In the encoding of cFP ,
each k-mer occupies 2 · k bits. Recall that for a given false positive rate F , the

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT

(a)

a1...ak

kX
i=1

ai
i mod 10

ATC 0

CCG 0

TCC 5

CGC 6

.

(b)

Bloom filter

1

0

0

0

0

1

1

0

0

0

(c)

Nodes self-information:

dlog2

43

7

!
e = 30 bits

Structure size:

10|{z}
Bloom

+ 3 · 6|{z}
Crit. false pos.

= 28 bits

(d)

Fig. 1: A complete example of removing false positives in the probabilistic de Bruijn
graph. (a) shows S, an example de Bruijn graph (the 7 black nodes), and B, its prob-
abilistic representation from a Bloom filter (taking the union of black, red and green
nodes). Red nodes are immediate neighbors of S in B. The red nodes are the critical
false positives. Green nodes are all the other nodes of B; (b) shows a sample of the hash
values associates to the nodes of S (a toy hash function is used); (c) shows the complete
Bloom filter associated to S; incidentally, the nodes of B are exactly those to which the
Bloom filter answers positively; (d) describes the lower bound for exactly encoding the
nodes of S (self-information) and the space required to encode our structure (Bloom
filter, 10 bits, and 3 critical false positives, 6 bits per 3-mer).

expected optimal Bloom filter size is 1.44n log2(1
F). The total structure size is

thus expected to be

1.44n log2

(
1
F

)
︸ ︷︷ ︸

Bloom filter

+ (16 · Fnk)︸ ︷︷ ︸
cFP

bits (2)

The size is minimal for F ≈ (16k/2.08)−1. Thus, the minimal number of bits
required to store the Bloom filter and the set cFP is

n · (1.44 log2(
16k

2.08
) + 2.08). (3)

For illustration, Figure 2-(a) shows the size of the structure for various Bloom
filter sizes and k = 32. For this value of k, the optimal size of the Bloom filter
is 11.5 bits per k-mer, and the total structure occupies 13.5 bits per k-mer.
Figure 2-(b) shows that k has only a modest influence on the optimal structure
size. Note that the size of the cFP structure is in fact independent of k.

In comparison, a Bloom filter with virtually no critical false positives would
require F · 8n < 1, i.e. r > 1.44 log2(8n). For a human genome (n = 2.4 · 109), r
would be greater than 49.2, yielding a Bloom filter of size 13.7 GB.

0 5 10 15 20 25 30

0
20

40
60

80
10

0

Structure size per kmer, k=32

Size of the Bloom filter (bits / kmer)

S
tr

uc
tu

re
 s

iz
e

(b
its

/k
m

er
) Total = Bloom Filter + cFP

Bloom Filter
cFP

●

Optimal Size

11
.4

6

13.54

(a)

0 20 40 60 80 100

0
5

10
15

20
25

Optimal structure size per kmer

kmer size

S
tr

uc
tu

re
 s

iz
e

(b
its

/k
m

er
) Total = Bloom Filter + cFP

Bloom Filter
cFP

(b)

Fig. 2: (a) Structure size (Bloom filter, critical false positives) in function of the number
of bits per kmer allocated to the Bloom filter (also called ratio r) for k = 32. The
trade-off that optimizes the total size is shown in dashed lines. (b) Optimal size of the
structure for different values of k.

4 Additional marking structure for graph traversal

Many NGS applications, e.g. de novo assembly of genomes [11] and transcrip-
tomes [4], and de novo variant detection [17], rely on (i) simplifying and (ii)
traversing the de Bruijn graph. However, the graph as represented in the pre-
vious section neither supports (i) simplifications (as it is immutable) nor (ii)
traversals (as the Bloom filter cannot store an additional visited bit). To ad-
dress the former issue, we argue that the simplification step can be avoided by
designing a slightly more complex traversal procedure [2].

We introduce a novel, lightweight mechanism to record which portions of
the graph have already been visited. The idea behind this mechanism is that
not every node needs to be marked. Specifically, nodes that are inside simple
paths (i.e nodes having an in-degree of 1 and an out-degree of 1) will either be
all marked or all unmarked. We will refer to nodes having both their in-degree
and out-degree different to 1 as complex nodes. We propose to store marking
information of complex nodes, by explicitly storing complex nodes in a separate
hash table. In the de Bruijn graphs of genomes, the complete set of nodes dwarfs
the set of complex nodes [7]. The memory usage of the marking structure is ncC,
where nc is the number of complex nodes in the graph and C is the memory
usage of each entry in the hash table (C ≈ 2k + 8).

5 Implementation

The de Bruijn graph structure described in this article was implemented in a new
de novo assembly software: Minia3. An important preliminary step is to retrieve
the list of distinct k-mers that appear in the reads, i.e. true graph nodes. To
discard likely sequencing errors, only the k-mers which appear at least d times
are kept (solid k-mers). We experimentally set d to 3. Classical methods that
retrieve solid k-mers are based on hash tables [10], and their memory usage
scale linearly with the number of distinct k-mers. To avoid using more memory
than the whole structure, we implemented a constant-memory k-mer counting
procedure (manuscript in preparation). To deal with reverse-complementation,
k-mers are identified to their reverse-complements.

We implemented in Minia a graph traversal algorithm that constructs contigs
(i.e., gap-less assembled sequences). A bounded-depth, bounded-breadth BFS
algorithm (following Property 2 in [2]) is performed to traverse short, locally
complex regions. Specifically, the traversal discards tips shorter than 2k + 1
nodes. It chooses a single path, at random, among all possible paths that traverse
regions of breadth ≤ 20, provided these regions end with a single node of depth
≤ 500. These regions are assumed to be sequencing errors, short variants or
short repetitions. Note that paired reads information is not taken into account
in this traversal. In a typical assembly pipeline (e.g. [18]), a separate program
(scaffolder) can be used to link contigs using pairing information.

3 Source code available at http://minia.genouest.org/

6 Results

Throughout the Results section, we will refer to the N50 metric of an assembly
as the longest contig size, such that half the assembly is contained in contigs
longer than this size.

6.1 On the usefulness of removing critical false positives

To test whether the combination of the Bloom filter and the cFP structure of-
fers an advantage over a plain probabilistic de Bruijn graph, we compared both
structures in terms of memory usage and assembly consistency. We retrieved 20
million E. coli short reads from the Short Read Archive (SRX000429), and dis-
carded pairing information. Using this dataset, we constructed the probabilistic
de Bruijn graph, the cFP structure, and marking structure, for various Bloom
filter sizes (ranging from 5 to 19 bits per k-mer) and k = 23.

5 7 9 11 13 15 17 19

0

10

20

30

40

50
Marking struct.
Bloom filter

Probabilistic de Bruijn graph

● ● ●
●

●
● ● ● ● ● ● ● ● ● ● 3

100

4527

Bloom filter size (bits/kmer)

5 7 9 11 13 15 17 19

0

10

20

30

40

50
Crit. false pos.
Marking struct.
Bloom filter

W
ho

le
 s

tr
uc

tu
re

si
ze

 (
bi

ts
/k

m
er

)

Probabilistic dBG and cFP structure

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0

Bloom filter size (bits/kmer) D
iff

er
en

ce
s

w
ith

ex
ac

t a
ss

em
bl

y
(K

bp
)

Fig. 3: Whole structures size (Bloom filter, marking structure, and cFP if applicable) of
the probabilistic de Bruijn graph with (top right) and without the cFP structure (top
left), for an actual dataset (E. coli, k = 23). All plots are in function of the number
of bits per kmer allocated to the Bloom filter. Additionally, the difference is shown
(bottom left and bottom right) between a reference assembly made using an exact de
Bruijn graph, and an assembly made with each structure.

We measured the memory usage of both structures. For each, we performed
an assembly using Minia with exactly the same traversal procedure. The as-
semblies are compared to a reference assembly (using MUMmer), made with
an exact graph. The percentage of nucleotides in contigs which aligned to the
reference assembly was recorded.

Figure 3 shows that both the probabilistic de Bruijn graph and our structure
have the same optimal Bloom filter size (11 bits per k-mer, total structure size
of 13.82 bits and 13.62 per k-mer respectively). In the case of the probabilistic
de Bruijn graph, the marking structure is prominent. This is because the graph
has a significant amount of complex k-mers, most of them are linked to false
positive nodes. For the graph equipped with the cFP structure, the marking
structure only records the actual complex nodes; it occupies consistently 0.49
bits per k-mer. Both structure have comparable memory usage.

However, Figure 3 shows that the probabilistic de Bruijn graph produces
assemblies which strongly depend on the Bloom filter size. Even for large sizes,
the probabilistic graph assemblies differ by more than 3 Kbp to the reference
assembly. We observed that the majority of these differences are due to miss-
ing regions in the probabilistic graph assemblies. This is likely caused by extra
branching, which shortens the length of contigs (contigs shorter than 100 bp
are discarded). The N50 values of probabilistic graph assemblies (not shown in
the Figure) fluctuate by a few hundreds nucleotides around 10.6 Kbp. As the
traversal algorithm is robust to tips and small branching, false positive k-mers
do not significantly deteriorates the assembly contiguity. On the other hand,
the assemblies produced by our structure are strictly identical to the reference
assembly (N50 = 10.5 Kbp).

Below ≈ 9 bits per k-mer, probabilistic graph assemblies significantly dete-
riorate. This is consistent with another article [12], which observed that when
the false positive rate is over 18% (i.e., the Bloom filter occupies ≤ 4 bits per
k-mer), distant nodes in the original graph become connected in the probabilistic
de Bruijn graph. To sum up, assemblies produced by the probabilistic de Bruijn
graph are prone to randomness, while those produced by our structure are exact.

6.2 de novo assembly

We assembled a complete human genome (NA18507, SRA:SRX016231, 142.3
Gbp of unfiltered reads of length ≈ 100 bp, representing 47x coverage) using
Minia. After k-mer counting, 2,712,827,800 solid k-mers (d = 3) were inserted
in a Bloom filter dimensioned to 11.1 bits per solid k-mer. The cFP structure
contained 78,762,871 k-mers, which were stored as a sorted list of 64 bits integers,
representing 1.86 bits per solid k-mer. A total of 166,649,498 complex k-mers
(6% of the solid k-mers) were stored in the marking structure using 4.42 bits per
solid k-mer. Table 1 shows the time and memory usage required for each step in
Minia.

We compared our results with assemblies reported by the authors of ABySS [18],
SOAPdenovo [9], and the prototype assembler from Conway and Bromage [3].
Table 2 shows the results for four classical assembly quality metrics, and the
time and peak memory usage of the compared programs. We note that Minia
has the lowest memory usage (5.7 GB), seconded by the assembler from Conway
and Bromage (32 GB). The wall-clock execution time of Minia (23 h) is compa-
rable to the other assemblers; note that it is the only single-threaded assembler.
The N50 metric of our assembly (1.2 Kbp) is slightly above that of the other

assemblies (seconded by SOAPdenovo, 0.9 Kbp). All the programs except one
assembled 2.1 Gbp of sequences.

We furthermore assessed the accuracy of our assembly by aligning the contigs
produced by Minia to the GRCh37 human reference using GASSST [16]. Out
of the 2,090,828,207 nucleotides assembled, 1,978,520,767 nucleotides (94.6%)
were contained in contigs having a full-length alignment to the reference, with
at least 98% sequence identity. For comparison, 94.2% of the contigs assembled
by ABySS aligned full-length to the reference with 95% identity [18].

To test another recent assembler, SparseAssembler, the authors assembled
another dataset (NA12878), using much larger effective k values [20]. SparseAssem-
bler stores an approximation of the de Bruijn graph, which can be compared to
a classical graph for k′ = k + g, where g is the sparseness factor. The reported
assembly of the NA12878 individual by SparseAssembler (k + g = 56) has a N50
value of 2.1 Kbp and was assembled using 26 GB of memory, in a day. As an at-
tempt to perform a fair comparison, we increased the value of k from 27 to 51 for
the NA18507 individual. The N50 obtained by Minia (2.0 Kbp) was computed
with respect to the size of the assembly obtained by SparseAssembler. Both as-
semblers show similar contiguity. Minia assembled this dataset using 6.1 GB of
memory in 27 h, a 4.2× memory improvement compared to SparseAssembler.

Step Time (h) Memory (Gb)

k-mer counting 11.1 Constant (set to 4.0)

Enumerating positive extensions 2.8 3.6

Constructing cFP 2.9 Constant (set to 4.0)

Assembly 6.4 5.7

Overall 23 5.7

Table 1: Details of steps implemented in Minia, with wall-clock time and memory
usage for the human genome assembly. For constant-memory steps, memory usage was
automatically set to an estimation of the final memory size. In all steps, only one CPU
core was used.

7 Discussion

This article introduces a new, space-efficient representation of the de Bruijn
graph. The graph is implicitly encoded as a Bloom filter. A subset of false
positives, those which introduce false branching from true positive nodes, are
recorded in a separate structure. A new marking structure is introduced, in or-
der for any traversal algorithm to mark which nodes have already been visited.
The marking structure is also space-efficient, as it only stores information for a
subset of k-mers. Combining the Bloom filter, the critical false positives struc-
ture and the marking structure, we implemented a new memory-efficient method
for de novo assembly (Minia).

To the best of our knowledge, Minia is the first method that can create contigs
for a complete human genome on a desktop computer. Our method improves

Method Minia C. & B. ABySS SOAPdenovo

Value of k chosen 27 27 27 25

Number of contigs (M) 3.49 7.69 4.35 -

Longest contig (Kbp) 18.6 22.0 15.9 -

Contig N50 (bp) 1156 250 870 886

Sum (Gbp) 2.09 1.72 2.10 2.08

Nb of nodes/cores 1/1 1/8 21/168 1/16

Time (wall-clock, h) 23 50 15 8

Memory (total, GB) 5.7 32 336 140

Table 2: de novo human genome (NA18507) assemblies reported by our assembler
(Minia), Conway and Bromage assembler [3], ABySS [18], and SOAPdenovo [9]. Con-
tigs shorter than 100 bp were discarded. Assemblies were made without any pairing
information.

the memory usage of de Bruijn graphs by two orders of magnitude compared
to ABySS and SOAPdenovo, and by roughly one order of magnitude compared
to succinct and sparse de Bruijn graph constructions. Furthermore, the current
implementation completes the assembly in 1 day using a single thread.

de Bruijn graphs have more NGS applications than just de novo assembly.
We plan to port our structure to replace the more expensive graph representa-
tions in two pipelines for reference-free alternative splicing detection, and SNP
detection [14,17].

We wish to highlight three directions for improvement. First, some steps of
Minia could be implemented in parallel, e.g. graph traversal. Second, a more
succinct structure can be used to mark complex k-mers. Two candidates are
Bloomier filters [1] and minimal perfect hashing.

Third, the set of critical false positives could be reduced, by exploiting the
nature of the traversal algorithm used in Minia. The traversal ignores short tips,
and in general, graph regions that are eventually unconnected. One could then
define n-th order critical false positives (n-cFP) as follows. An extension of a
true positive graph node is a n-cFP if and only if a breadth-first search from
the true positive node, in the direction of the extension, has at least one node
of depth n + 1. In other words, false positive neighbors of the original graph
which are part of tips, and generally local dead-end graph structures, will not be
flagged as critical false positives. This is an extension of the method presented in
this article which, in this notation, only detects 0-th order critical false positives.

Acknowledgments

The authors are grateful to Dominique Lavenier for helpful discussions and ad-
vice, and Aurélien Rizk for proof-reading the manuscript. This work benefited
from the ANR grant associated with the MAPPI project (2010-2014).

References

1. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter: an efficient data
structure for static support lookup tables. In: Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms. pp. 30–39. Society for Industrial
and Applied Mathematics (2004)

2. Chikhi, R., Lavenier, D.: Localized genome assembly from reads to scaffolds: prac-
tical traversal of the paired string graph. Algorithms in Bioinformatics pp. 39–48
(2011)

3. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large
genomes. Bioinformatics 27(4), 479 (2011)

4. Grabherr, Manfred G, e.a.: Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nat Biotech 29(7), 644–652 (Jul 2011),

5. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Jour-
nal of Computational Biology 2(2), 291–306 (1995)

6. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nature Genetics (2012)

7. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes
using short reads. BMC bioinformatics 11(1), 21 (2010)

8. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: Building a better
bloom filter. AlgorithmsESA 2006 pp. 456–467 (2006)

9. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome research 20(2), 265 (2010)

10. Marais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011),

11. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation se-
quencing data. Genomics 95(6), 315–327 (2010)

12. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.:
Scaling metagenome sequence assembly with probabilistic de bruijn graphs. Arxiv
preprint arXiv:1112.4193 (2011)

13. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: Meta-IDBA: a de novo assem-
bler for metagenomic data. Bioinformatics 27(13), i94–i101 (2011)

14. Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M.F., Lacroix, V.: Identifying SNPs
without a reference genome by comparing raw reads. In: String Processing and
Information Retrieval. pp. 147–158. Springer (2010)

15. Peterlongo, P., Chikhi, R.: Mapsembler, targeted and micro assembly of large NGS
datasets on a desktop computer. BMC Bioinformatics (1), 48 (2012)

16. Rizk, G., Lavenier, D.: GASSST: global alignment short sequence search tool.
Bioinformatics 26(20), 2534 (2010)

17. Sacomoto, G., Kielbassa, J., Chikhi, R., Uricaru, R., Antoniou, P., Sagot, M.,
Peterlongo, P., Lacroix, V.: KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinformatics 13(Suppl 6), S5 (2012),

18. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, .:
ABySS: a parallel assembler for short read sequence data. Genome Research 19(6),
1117–1123 (2009),

19. Warren, R.L., Holt, R.A.: Targeted assembly of short sequence reads. PloS one
6(5), e19816 (2011)

20. Ye, C., Ma, Z., Cannon, C., Pop, M., Yu, D.: Exploiting sparseness in de novo
genome assembly. BMC Bioinformatics 13(Suppl 6), S1 (2012),

